Development of PM<sub>2.5</sub> source impact spatial fields using a hybrid source apportionment air quality model

Author:

Ivey C. E.,Holmes H. A.,Hu Y. T.,Mulholland J. A.,Russell A. G.ORCID

Abstract

Abstract. An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods motivating the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor models (RMs) and chemical transport models (CTMs). The hybrid CTM–RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multiscale Air Quality (CMAQ) model, and the RM approach is based on the chemical mass balance (CMB) model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM–RM method results, and is applied for January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Data withholding also provides an estimate of method uncertainty. Directly applied (hybrid, HYB) and spatially interpolated (spatial hybrid, SH) hybrid adjustment factors at withheld observation sites had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields). Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld observation sites using HYB and SH adjustment factors. The mean concentrations of total PM2.5 at withheld observation sites were 11.7 (± 8.3), 16.3 (± 11), 8.59 (± 4.7), and 9.2 (± 5.7) μg m−3 for the observations, CTM, HYB, and SH predictions, respectively. Correlations improved for concentrations of major ions, including nitrate (CMAQ–DDM (decoupled direct method): 0.404, SH: 0.449), ammonium (CMAQ–DDM: 0.454, SH: 0.492), and sulfate (CMAQ–DDM: 0.706, SH: 0.730). Errors in simulated concentrations of metals were reduced considerably: 295 % (CMAQ–DDM) to 139 % (SH) for vanadium; and 1340 % (CMAQ–DDM) to 326 % (SH) for manganese. Errors in simulated concentrations of some metals are expected to remain given the uncertainties in source profiles. Species concentrations were reconstructed using SH results, and the error relative to observed concentrations was greatly reduced as compared to CTM-simulated concentrations. Results demonstrate that the hybrid method along with a spatial extension can be used for large-scale, spatially resolved source apportionment studies where observational data are spatially and temporally limited.

Publisher

Copernicus GmbH

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3