Skill assessment of sub-seasonal 2-m temperature forecasts for Helsinki, Finland

Author:

Rantanen MikaORCID,Kämäräinen MattiORCID,Hyvärinen OttoORCID,Vajda Andrea

Abstract

<p>Sub-seasonal to seasonal scale forecasts provide useful information for city authorities for operational planning, preparedness and maintenance costs optimization. In the EU H2020 E-SHAPE project the Finnish Meteorological Institute aims at developing an operational service providing user-oriented sub-seasonal and seasonal forecast products for the City of Helsinki tailored for winter maintenance activities. To be able to provide skilful sub-seasonal to seasonal forecasts products, bias adjustment and evaluation of the used weather parameters, i.e. temperature and snow is crucial. </p><p>In this study, we focus on the skill assessment of sub-seasonal temperature forecasts in Helsinki, Finland, experimenting with various methods to adjust the bias from the raw temperature forecasts. Due to its coastal location, skilful forecasting of temperatures for Helsinki is challenging. The temperature gradient on the coastline is especially strong during spring when inland areas warm considerably faster than the coastline. Therefore, raw point forecasts for Helsinki suffer from cold bias during the March-July period.</p><p>We use the 2 m temperature extended-range reforecasts obtained from the ECMWF S2S database and apply two bias adjustment techniques: removing the mean bias and the quantile mapping method. Reforecasts for a 20-years period, 2000-2019 with 10 ensemble members, run twice a week for 46 days ahead were calibrated and evaluated. Two datasets are used as reference, observations from Helsinki Kaisaniemi weather station and gridded ERA5 reanalysis data. Thus, these combinations yield in total five sets of forecasts which are evaluated against the observations.</p><p>The results of the experiments and the potential added value of bias correction will be presented for discussion. Based on the preliminary results, especially the cold bias in spring and early summer can be improved with the bias-correction methods. The bias-adjusted extended-range temperature forecasts are used in the development of sub-seasonal winter forecast products tailored for the needs of city maintenance.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban resilience to extreme weather - Sub-seasonal and seasonal forecasts for winter maintenance activities in Helsinki;FMI’s Climate Bulletin Research Letters e-shape special issue 2022;2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3