Estimating marine carbon uptake in the northeast Pacific using a neural network approach
-
Published:2023-09-27
Issue:18
Volume:20
Page:3919-3941
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Duke Patrick J.ORCID, Hamme Roberta C., Ianson DebbyORCID, Landschützer PeterORCID, Ahmed Mohamed M. M., Swart Neil C., Covert Paul A.ORCID
Abstract
Abstract. The global ocean takes up nearly a quarter of anthropogenic
CO2 emissions annually, but the variability in this uptake at regional
scales remains poorly understood. Here we use a neural network approach to
interpolate sparse observations, creating a monthly gridded seawater partial
pressure of CO2 (pCO2) data product from January 1998 to December 2019, at 1/12∘ × 1/12∘ spatial resolution, in the
northeast Pacific open ocean, a net sink region. The data product (ANN-NEP;
NCEI Accession 0277836) was created from pCO2 observations within the
2021 version of the Surface Ocean CO2 Atlas (SOCAT) and a range of
predictor variables acting as proxies for processes affecting pCO2 to
create nonlinear relationships to interpolate observations at a spatial
resolution 4 times greater than leading global products and with better
overall performance. In moving to a higher resolution, we show that the
internal division of training data is the most important parameter for
reducing overfitting. Using our pCO2 product, wind speed, and
atmospheric CO2, we evaluate air–sea CO2 flux variability. On
sub-decadal to decadal timescales, we find that the upwelling strength of
the subpolar Alaskan Gyre, driven by large-scale atmospheric forcing, acts
as the primary control on air–sea CO2 flux variability (r2=0.93, p<0.01). In the northern part of our study region, divergence
from atmospheric CO2 is enhanced by increased local wind stress curl,
enhancing upwelling and entrainment of naturally CO2-rich subsurface
waters, leading to decade-long intervals of strong winter outgassing. During
recent Pacific marine heat waves from 2013 on, we find enhanced atmospheric
CO2 uptake (by as much as 45 %) due to limited wintertime
entrainment. Our product estimates long-term surface ocean pCO2 increase
at a rate below the atmospheric trend (1.4 ± 0.1 µatm yr−1)
with the slowest increase in the center of the subpolar gyre where there is
strong interaction with subsurface waters. This mismatch suggests the
northeast Pacific Ocean sink for atmospheric CO2 may be increasing.
Funder
Natural Sciences and Engineering Research Council of Canada Fisheries and Oceans Canada
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference126 articles.
1. Amari, S., Murata, N., Müller, K.-R., Finke, M., and Yang, H. H.:
Asymptotic Statistical Theory of Overtraining and Cross-Validation, IEEE T.
Neural Networ., 8, 985–996, 1997. 2. Amaya, D. J., Miller, A. J., Xie, S. P., and Kosaka, Y.: Physical drivers of
the summer 2019 North Pacific marine heatwave, Nat. Commun., 11, 1–9,
https://doi.org/10.1038/s41467-020-15820-w, 2020. 3. Aricò, S., Arrieta, J. M., Bakker, D. C. E., Boyd, P. W., Cotrim da
Cunha, L., Chai, F., Dai, M., Gruber, N., Isensee, K., Ishii, M., Jiao, N.,
Lauvset, S. K., McKinley, G. A., Monteiro, P., Robinson, C., Sabine, C.,
Sanders, R., Schoo, K. L., Schuster, U., Shutler, J. D., Thomas, H.,
Wanninkhof, R., Watson, A. J., Bopp, L., Boss, E., Bracco, A., Cai, W., Fay,
A., Feely, R. A., Gregor, L., Hauck, J., Heinze, C., Henson, S., Hwang, J.,
Post, J., Suntharalingam, P., Telszewski, M., Tilbrook, B., Valsala, V., and
ojas Aldana, A.: Integrated Ocean Carbon Research: A Summary of Ocean Carbon
Research, and Vision of Coordinated Ocean Carbon Research and Observations
for the Next Decade, Intergovernmental Oceanographic Commission, 46, https://doi.org/10.25607/h0gj-pq41, 2021. 4. Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model
of the global ocean including Fe, Si, P colimitations, Global Biogeochem.
Cy., 17, 1060, https://doi.org/10.1029/2001gb001745, 2003. 5. Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016 (data available at: https://www.socat.info/, last access: August 2022).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|