Constraining Holocene hydrological changes in the Carpathian-Balkan region using speleothem δ<sup>18</sup>O and pollen-based temperature reconstructions

Author:

Drăguşin V.,Staubwasser M.,Hoffmann D. L.,Ersek V.,Onac B. P.,Veres D.ORCID

Abstract

Abstract. Here we present a new speleothem isotope record (POM2) from Ascunsă Cave (Romania) that provides new data on past climate changes in the Carpathian-Balkan region from 8.2 ka until present. This paper describes an approach towards constraining the effect of temperature changes on calcite δ18O values in stalagmite POM2 over the course of the Middle Holocene (6–4 ka), and across the 8.2 and 3.2 ka rapid climate change events. Independent pollen temperature reconstructions are used to constrain the temperature-dependent component of total isotopic change in speleothem calcite. This includes the temperature-dependent composition of rain water attained during vapour condensation and during calcite precipitation at the given cave temperature. The only prior assumptions are that pollen-derived average annual temperature reflects average cave temperature, and that pollen-derived coldest and warmest month temperatures reflect the range of condensation temperatures of rain at the cave site. This approach constrains a range of values between which speleothem isotopic changes should be found if controlled only by surface temperature variations at the cave site. Deviations of measured δ18Oc values from the calculated range are interpreted towards large-scale hydrologic change independent of local temperature. Following this approach, we show that an additional 0.6‰ enrichment of δ18Oc in the POM2 stalagmite was caused by changing hydrological patterns in SW Romania during the Middle Holocene. Further, by extending the calculations to other speleothem records from around the entire Mediterranean Basin, it appears that all Eastern Mediterranean speleothems recorded a similar isotopic enrichment due to changing hydrology, whereas all changes recorded in speleothems from the Western Mediterranean are fully explained by temperature variation alone. This highlights a different hydrological evolution between the two sides of the Mediterranean. Our results also demonstrate that during the 8.2 ka event, POM2 stable isotope data fit the temperature-constrained isotopic variability, with only little hydrologic change at most. In the case of the 3.2 ka event, the hydrological factor is more evident. This implies a potentially different rainfall pattern in the Southern Carpathian region during this event at the end of the Bronze Age. This study brings new evidence for disturbances in Eastern Mediterranean hydrology during the Holocene, bearing importance for the understanding of climate pressure on agricultural activities in this area.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3