Californian forest fire plumes over Southwestern British Columbia: lidar, sunphotometry, and mountaintop chemistry observations
-
Published:2011-01-17
Issue:2
Volume:11
Page:465-477
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
McKendry I.,Strawbridge K.,Karumudi M. L.,O'Neill N.,Macdonald A. M.,Leaitch R.,Jaffe D.,Cottle P.,Sharma S.,Sheridan P.,Ogren J.
Abstract
Abstract. Forest fires in Northern California and Oregon were responsible for two significant regional scale aerosol transport events observed in southern British Columbia during summer 2008. A combination of ground based (CORALNet) and satellite (CALIPSO) lidar, sunphotometry and high altitude chemistry observations permitted unprecedented characterization of forest fire plume height and mixing as well as description of optical properties and physicochemistry of the aerosol. In southwestern BC, lidar observations show the smoke to be mixed through a layer extending to 5–6 km a.g.l. where the aerosol was confined by an elevated inversion in both cases. Depolarization ratios for a trans-Pacific dust event (providing a basis for comparison) and the two smoke events were consistent with observations of dust and smoke events elsewhere and permit discrimination of aerosol events in the region. Based on sunphotometry, the Aerosol Optical Thicknesses (AOT) reached maxima of ~0.7 and ~0.4 for the two events respectively. Dubovik-retrieval values of reff, f during both the June/July and August events varied between about 0.13 and 0.15 μm and confirm the dominance of accumulation mode size particles in the forest fire plumes. Both Whistler Peak and Mount Bachelor Observatory data show that smoke events are accompanied by elevated CO and O3 concentrations as well as elevated K+/SO4 ratios. In addition to documenting the meteorology and physic-chemical characteristics of two regional scale biomass burning plumes, this study demonstrates the positive analytical synergies arising from the suite of measurements now in place in the Pacific Northwest, and complemented by satellite borne instruments.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference28 articles.
1. Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E., and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmos. Chem. Phys., 9, 2431–2440, https://doi.org/10.5194/acp-9-2431-2009, 2009. 2. Anderson, T. L. and Ogren, J.A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998. 3. Bond, T. C., Anderson, T. L. and Campbell, D.: Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols, Aerosol Sci. Technol., 30, 582–600, 1999. 4. Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 2000. 5. Duck, T. J., Firanski, B. J., Millet, D. B., Goldstein, A. H., Allan, J., Holzinger, R., Worsnop, D. R., White, A. B., Stohl, A., Dickinson, C. S., and van Donkelaar, A.: Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004, J. Geophys. Res.-Atmos., 112, D10S44, https://doi.org/10.1029/2006JD007716, 2007.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|