On the numerical stability of surface–atmosphere coupling in weather and climate models

Author:

Beljaars Anton,Dutra EmanuelORCID,Balsamo GianpaoloORCID,Lemarié Florian

Abstract

Abstract. Coupling the atmosphere with the underlying surface presents numerical stability challenges in cost-effective model integrations used for operational weather prediction or climate simulations. These are due to the choice of large integration time steps compared to the physical timescale of the problem, aiming at reducing computational burden, and to an explicit flux coupling formulation, often preferred for its simplicity and modularity. Atmospheric models therefore use the surface-layer temperatures (representative of the uppermost soil, snow, ice, water, etc.) at the previous integration time step in all surface–atmosphere heat-flux calculations and prescribe fluxes to be used in the surface model integrations. Although both models may use implicit formulations for the time steps, the explicit flux coupling can still lead to instabilities.In this study, idealized simulations with a fully coupled implicit system are performed to derive an empirical relation between surface heat flux and surface temperature at the new time level. Such a relation mimics the fully implicit formulation by allowing one to estimate the surface temperature at the new time level without solving the surface heat diffusion problem. It is based on similarity reasoning and applies to any medium with constant heat diffusion and heat capacity parameters. The advantage is that modularity of the code is maintained and that the heat flux can be computed in the atmospheric model in such a way that instabilities in the snow or ice code are avoided. Applicability to snow–ice–soil models with variable density is discussed, and the loss of accuracy turns out to be small. A formal stability analysis confirms that the parametrized implicit-flux coupling is unconditionally stable.

Publisher

Copernicus GmbH

Reference14 articles.

1. Beljaars, A., Bechtold, P., Koehler, M., Morcrette, J.-J., Tompkins, A., Viterbo, P., and Wedi, N.: The numerics of physical parametrization, in: Proc. of ECMWF Seminar on Recent developments in numerical methods for atmosphere and ocean modelling, 113–134, ECMWF, Reading, UK, 2004.

2. Best, M., Beljaars, A., Polcher, J., and Viterbo, P.: A proposed structure for coupling tiled surfaces with the planetary boundary layer, J. Hydrometeor., 5, 1271–1278, 2004.

3. Brutsaert, W.: Evaporation into the atmosphere, Springer, 1982.

4. Carslaw, H. and Jaeger, J.: Conduction of heat in solids, Springer, 1959.

5. Dutra, E., Balsamo, G., Viterbo, P., Miranda, P., Beljaars, A., Schär, C., and Elder, K.: An improved snow scheme for the ECMWF land surface model: description and offline validation, J. Hydrometeor., 11, 899–916, 2010.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3