Distinct photochemistry in glycine particles mixed with different atmospheric nitrate salts
-
Published:2023-08-29
Issue:16
Volume:23
Page:9585-9595
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Liang ZhancongORCID, Cheng Zhihao, Zhang RuifengORCID, Qin Yiming, Chan Chak K.ORCID
Abstract
Abstract. Particulate free amino acids (FAAs) are essential components of organonitrogen that have critical climate impacts, and they are usually considered stable end-products from protein degradation. In this work, we investigated the decay of glycine (GC) as a model FAA under the photolysis of different particulate nitrate salts using an in situ Micro-Raman system. Upon cycling the relative humidity (RH) between 3 % and 80 % RH, ammonium nitrate (AN) and GC mixed particles did not exhibit any phase change, whereas sodium nitrate (SN) and GC mixed particles crystallized at 60 % and deliquesced at 82 % RH. Under light illumination at 80 % RH, AN + GC particles showed almost no spectral changes, while rapid decays of glycine and nitrate were observed in SN + GC particles. The interactions between nitrate and glycine in AN + GC particles suppressed crystallization but also hindered nitrate photolysis and glycine decay. On the other hand, glycine may form a complex with Na+ in deliquescent SN + GC particles and allow unbonded nitrate to undergo photolysis and trigger glycine decay, though nitrate photolysis was greatly hindered upon particle crystallization. Our work provides insights into how FAAs may interact with different nitrate salts under irradiation and lead to distinct decay rates, which facilitates their atmospheric lifetime estimation.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference82 articles.
1. Acero, J. L., Stemmler, K., and Von Gunten, U.:
Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: a predictive tool for drinking water treatment, Environ. Sci. Technol., 34, 591–597, 2000. 2. Aikens, C. M. and Gordon, M. S.:
Incremental Solvation of Nonionized and Zwitterionic Glycine, J. Am. Chem. Soc., 128, 12835–12850, https://doi.org/10.1021/ja062842p, 2006. 3. Asher, S. A., Tuschel, D. D., Vargson, T. A., Wang, L., and Geib, S. J.:
Solid state and solution nitrate photochemistry: photochemical evolution of the solid state lattice, J. Phys. Chem. A, 115, 4279–4287, 2011. 4. Ashraf, H., Guo, Y., Wang, N., Pang, S., and Zhang, Y.-H.:
Hygroscopicity of Hofmeister Salts and Glycine Aerosols–Salt Specific Interactions, J. Phys. Chem. A, 125, 1589–1597, https://doi.org/10.1021/acs.jpca.0c10710, 2021. 5. Aziz, E. F., Ottosson, N., Eisebitt, S., Eberhardt, W., Jagoda-Cwiklik, B., Vácha, R., Jungwirth, P., and Winter, B.:
Cation-Specific Interactions with Carboxylate in Amino Acid and Acetate Aqueous Solutions: X-ray Absorption and ab initio Calculations, J. Phys. Chem. B, 112, 12567–12570, https://doi.org/10.1021/jp805177v, 2008.
|
|