Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: characteristics, sources, and health risks

Author:

Zhan Yangzhihao,Xie Min,Zhao Wei,Wang Tijian,Gao Da,Chen Pulong,Tian Jun,Zhu Kuanguang,Li Shu,Zhuang BingliangORCID,Li Mengmeng,Luo Yi,Zhao Runqi

Abstract

Abstract. Given the increasing complexity of the chemical composition of PM2.5, identifying and quantitatively assessing the contributions of pollution sources has played an important role in formulating policies to control particle pollution. This study provides a comprehensive assessment between PM2.5 chemical characteristics, sources, and health risks based on sampling data conducted over 1 year (March 2018 to February 2019) in Nanjing. Results show that PM2.5 exhibits a distinct variation across different seasons, which is primarily driven by emissions, meteorological conditions, and the chemical conversion of gaseous pollutants. First, the chemical mass reconstruction shows that secondary inorganic aerosols (62.5 %) and carbonaceous aerosols (21.3 %) contributed most to the PM2.5 mass. The increasing oxidation rates of SO2 and NO2 from summer to winter indicate that the secondary transformation of gaseous pollutants is strongly positively correlated with relative humidity. Second, the positive matrix factorization (PMF) method shows that identified PM2.5 sources include secondary inorganic aerosol source (SIS, 42.5 %), coal combustion (CC, 22.4 %), industry source (IS, 17.3 %), vehicle emission (VE, 10.7 %), fugitive dust (FD, 5.8 %), and other sources (1.3 %). The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the concentration-weighted trajectory (CWT) analysis are used to further explore different spatial distributions and regional transport of sources. The concentrations (10–11 µg m−3) of SIS and CC distribute in Nanjing and central China in winter. The concentrations (8–10 µg m−3) of IS and VE are potentially located north of Jiangsu, Anhui, and Jiangxi. Finally, the health risk assessment indicates that the carcinogenic and non-carcinogenic risks of toxic elements (Cr, As, Ni, Mn, V, and Pb) mainly come from IS, VE, and CC, which are within the tolerance or acceptable level. Although the main source of pollution in Nanjing is SIS at present, we should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3