Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers

Author:

Dunne Kieran B. J.,Jerolmack Douglas J.ORCID

Abstract

Abstract. Gravel-bedded rivers organize their bank-full channel geometry and grain size such that shear stress is close to the threshold of motion. Sand-bedded rivers, on the other hand, typically maintain bank-full fluid stresses far in excess of threshold, a condition for which there is no satisfactory understanding. A fundamental question arises: are bed-load (gravel-bedded) and suspension (sand-bedded) rivers two distinct equilibrium states, or do alluvial rivers exhibit a continuum of transport regimes as some have recently suggested? We address this question in two ways: (1) reanalysis of global channel geometry datasets, with consideration of the dependence of critical shear stress upon site-specific characteristics (e.g., slope and grain size); and (2) examination of a longitudinal river profile as it transits from gravel to sand bedded. Data reveal that the transport state of alluvial riverbed sediments is bimodal, showing either near-threshold or suspension conditions, and that these regimes correspond to the respective bimodal peaks of gravel and sand that comprise natural riverbed sediments. Sand readily forms near-threshold channels in the laboratory and some field settings, however, indicating that another factor, such as bank cohesion, must be responsible for maintaining suspension channels. We hypothesize that alluvial rivers adjust their geometry to the threshold-limiting bed and bank material, which for gravel-bedded rivers is gravel but for sand-bedded rivers is mud (if present), and present tentative evidence for this idea.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3