Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5
-
Published:2016-12-05
Issue:12
Volume:9
Page:4313-4338
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Metzger ChristineORCID, Nilsson Mats B., Peichl MatthiasORCID, Jansson Per-Erik
Abstract
Abstract. In contrast to previous peatland carbon dioxide (CO2) model sensitivity analyses, which usually focussed on only one or a few processes, this study investigates interactions between various biotic and abiotic processes and their parameters by comparing CoupModel v5 results with multiple observation variables. Many interactions were found not only within but also between various process categories simulating plant growth, decomposition, radiation interception, soil temperature, aerodynamic resistance, transpiration, soil hydrology and snow. Each measurement variable was sensitive to up to 10 (out of 54) parameters, from up to 7 different process categories. The constrained parameter ranges varied, depending on the variable and performance index chosen as criteria, and on other calibrated parameters (equifinalities). Therefore, transferring parameter ranges between models needs to be done with caution, especially if such ranges were achieved by only considering a few processes. The identified interactions and constrained parameters will be of great interest to use for comparisons with model results and data from similar ecosystems. All of the available measurement variables (net ecosystem exchange, leaf area index, sensible and latent heat fluxes, net radiation, soil temperatures, water table depth and snow depth) improved the model constraint. If hydraulic properties or water content were measured, further parameters could be constrained, resolving several equifinalities and reducing model uncertainty. The presented results highlight the importance of considering biotic and abiotic processes together and can help modellers and experimentalists to design and calibrate models as well as to direct experimental set-ups in peatland ecosystems towards modelling needs.
Funder
Svenska Forskningsrådet Formas
Publisher
Copernicus GmbH
Reference126 articles.
1. Abdalla, M., Hastings, A., Bell, M. J., Smith, J. U., Richards, M., Nilsson, M. B., Peichl, M., Löfvenius, M. O., Lund, M., Helfter, C., Nemitz, E., Sutton, M. A., Aurela, M., Lohila, A., Laurila, T., Dolman, A. J., Belelli-Marchesini, L., Pogson, M., Jones, E., Drewer, J., Drosler, M., and Smith, P.: Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model, Water Air Soil. Poll., 225, 1–14, https://doi.org/10.1007/s11270-014-2182-8, 2014. 2. Alexandersson, H., Karlström, C., and Larsson-McCann, S.: Temperaturen och nedercörden i sverige 1961–1990 (Swedish), Temperature and Precipitation in Sweden 1961–1990, Reference Normals Meteorologi 81, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden, 1991. 3. Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Advances in Ecological Research, 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 1999. 4. Aurela, M.: The timing of snow melt controls the annual CO2 balance in a subarctic fen, Geophys. Res. Lett., 31, L16119, https://doi.org/10.1029/2004GL020315, 2004. 5. Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland development model 1: Rationale, conceptual model, and hydrological basis, Ecohydrol., 5, 242–255, https://doi.org/10.1002/eco.230, 2012.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|