Research on the influence of air-gap eccentricity on the temperature field of a motorized spindle

Author:

Li Xiaohu,Liu JinyuORCID,Li Cui,Hong Jun,Wang Dongfeng

Abstract

Abstract. The air-gap state between the stator and rotor is an important indicator to measure the performance of a motorized spindle. It affects the temperature field distribution of the motorized spindle and the machining accuracy of the mechanical parts. Since the accurate thermal model is the basis of the research on the temperature field distribution of the motorized spindle, in this paper, firstly, the mechanical loss, electrical loss and magnetic loss of the motor under different air-gap eccentricities are calculated and the heat-generating power of an angular-contact ball bearing is obtained based on Harries contact theory. Secondly, the thermal model of the motorized spindle is established and the steady-state temperature field of the motorized spindle is simulated by using ANSYS, and the influence of air-gap eccentricity on the temperature field of the motorized spindle is discussed. Finally, the circumferential temperature field distribution of the motorized spindle with the air-gap eccentricity is verified by experiment. The results show that the air-gap eccentricity has a significant influence on the non-uniform temperature field of the motorized spindle.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

Copernicus GmbH

Subject

Industrial and Manufacturing Engineering,Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of thermal errors in a motorized spindle in CNC machine tools by applying loads based on heat flux;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-04-28

2. A novel approach to the thermal-deformation coupling calculation of the high-speed spindle-bearing system;International Journal of Mechanics and Materials in Design;2022-12-21

3. Nonlinear dynamic characteristics of full-ceramic motorized spindle considering axial transfer of unbalanced magnetic pull;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-09-09

4. Simulation and Experiment Analysis of Temperature Field of Magnetic Suspension Support Based on FBG;Sensors;2022-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3