P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production
-
Published:2020-03-26
Issue:3
Volume:13
Page:1545-1581
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Stocker Benjamin D.ORCID, Wang HanORCID, Smith Nicholas G.ORCID, Harrison Sandy P.ORCID, Keenan Trevor F.ORCID, Sandoval David, Davis Tyler, Prentice I. ColinORCID
Abstract
Abstract. Terrestrial photosynthesis is the basis for vegetation growth and drives the land carbon cycle. Accurately simulating gross primary production (GPP, ecosystem-level apparent photosynthesis) is key for satellite monitoring and Earth system model predictions under climate change. While robust models exist for describing leaf-level photosynthesis, predictions diverge due to uncertain photosynthetic traits and parameters which vary on multiple spatial and temporal scales. Here, we describe and evaluate a GPP (photosynthesis per unit ground area) model, the P-model, that combines the Farquhar–von Caemmerer–Berry model for C3 photosynthesis with an optimality principle for the carbon assimilation–transpiration trade-off, and predicts a multi-day average light use efficiency (LUE) for any climate and C3 vegetation type. The model builds on the theory developed in Prentice et al. (2014) and Wang et al. (2017a) and is extended to include low temperature effects on the intrinsic quantum yield and an empirical soil moisture stress factor. The model is forced with site-level data of the fraction of absorbed photosynthetically active radiation (fAPAR) and meteorological data and is evaluated against GPP estimates from a globally distributed network of ecosystem flux measurements. Although the P-model requires relatively few inputs, the R2 for predicted versus observed GPP based on the full model setup is 0.75 (8 d mean, 126 sites) – similar to comparable satellite-data-driven GPP models but without predefined vegetation-type-specific parameters. The R2 is reduced to 0.70 when not accounting for the reduction in quantum yield at low temperatures and effects of low soil moisture on LUE. The R2 for the P-model-predicted LUE is 0.32 (means by site) and 0.48 (means by vegetation type). Applying this model for global-scale simulations yields a total global GPP of 106–122 Pg C yr−1 (mean of 2001–2011), depending on the fAPAR forcing data. The P-model provides a simple but powerful method for predicting – rather than prescribing – light use efficiency and simulating terrestrial photosynthesis across a wide range of conditions. The model is available as an R package (rpmodel).
Funder
H2020 Marie Skłodowska-Curie Actions H2020 European Research Council
Publisher
Copernicus GmbH
Reference209 articles.
1. Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak,
R., and Janouš, D.: Soil surface CO2 efflux measurements in Norway
spruce forests: Comparison between four different sites across Europe
– from boreal to alpine forest, Geoderma, 192, 295–303,
https://doi.org/10.1016/j.geoderma.2012.08.027, 2013. a 2. Adams, W. W., Zarter, C. R., Ebbert, V., and Demmig-Adams, B.: Photoprotective Strategies of Overwintering Evergreens, Biosci., 54, 41–49, 2004. a 3. Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the nitrogen
and carbon budget of two managed temperate grassland fields, Agr.
Ecosyst. Environ., 133, 150–162, https://doi.org/10.1016/j.agee.2009.05.006, 2009. a 4. Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N.: Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa, Biogeosci., 6, 251–266, https://doi.org/10.5194/bg-6-251-2009, 2009. a 5. Ardo, J., Molder, M., El-Tahir, B. A., and Elkhidir, H. A. M.: Seasonal
variation of carbon fluxes in a sparse savanna in semi arid Sudan, Carb.
Bal. Manage., 3, 7, https://doi.org/10.1186/1750-0680-3-7, 2008. a
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|