Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53)

Author:

Forrest MatthewORCID,Tost HolgerORCID,Lelieveld JosORCID,Hickler Thomas

Abstract

Abstract. Central to the development of Earth system models (ESMs) has been the coupling of previously separate model types, such as ocean, atmospheric, and vegetation models, to address interactive feedbacks between the system components. A modelling framework which combines a detailed representation of these components, including vegetation and other land surface processes, enables the study of land–atmosphere feedbacks under global climate change. Here we present the initial steps of coupling LPJ-GUESS, a dynamic global vegetation model, to the atmospheric chemistry-enabled atmosphere–ocean general circulation model EMAC. The LPJ-GUESS framework is based on ecophysiological processes, such as photosynthesis; plant and soil respiration; and ecosystem carbon, nitrogen, and water cycling, and it includes a comparatively detailed individual-based representation of resource competition, plant growth, and vegetation dynamics as well as fire disturbance. Although not enabled here, the model framework also includes a crop and managed-land scheme, a representation of arctic methane and permafrost, and a choice of fire models; and hence it represents many important terrestrial biosphere processes and provides a wide range of prognostic trace-gas emissions from vegetation, soil, and fire. We evaluated an online one-way-coupled model configuration (with climate variable being passed from EMAC to LPJ-GUESS but no return information flow) by conducting simulations at three spatial resolutions (T42, T63, and T85). These were compared to an expert-derived map of potential natural vegetation and four global gridded data products: tree cover, biomass, canopy height, and gross primary productivity (GPP). We also applied a post hoc land use correction to account for human land use. The simulations give a good description of the global potential natural vegetation distribution, although there are some regional discrepancies. In particular, at the lower spatial resolutions, a combination of low-temperature and low-radiation biases in the growing season of the EMAC climate at high latitudes causes an underestimation of vegetation extent. Quantification of the agreement with the gridded datasets using the normalised mean error (NME) averaged over all datasets shows that increasing the spatial resolution from T42 to T63 improved the agreement by 10 %, and going from T63 to T85 improved the agreement by a further 4 %. The highest-resolution simulation gave NME scores of 0.63, 0.66, 0.84, and 0.53 for tree cover, biomass, canopy height, and GPP, respectively (after correcting tree cover and biomass for human-caused deforestation which was not present in the simulations). These scores are just 4 % worse on average than an offline LPJ-GUESS simulation using observed climate data and corrected for deforestation by the same method. However, it should be noted that the offline LPJ-GUESS simulation used a higher spatial resolution, which makes the evaluation more rigorous, and that excluding GPP from the datasets (which was anomalously better in the EMAC simulations) gave 10 % worse agreement for the EMAC simulation than the offline simulation. Gross primary productivity was best simulated by the coupled simulations, and canopy height was the worst. Based on this first evaluation, we conclude that the coupled model provides a suitable means to simulate dynamic vegetation processes in EMAC.

Publisher

Copernicus GmbH

Reference58 articles.

1. Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015. a

2. Alessandri, A., Catalano, F., Felice, M. D., Hurk, B. V. D., Reyes, F. D., Boussetta, S., Balsamo, G., and Miller, P. A.: Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth, Clim. Dynam., 49, 1215–1237, https://doi.org/10.1007/s00382-016-3372-4, 2017. a, b

3. Arino, O., Perez, J. J. R., Kalogirou, V., Bontemps, S., Defourny, P., and Bogaert, E. V.: Global Land Cover Map for 2009 (GlobCover 2009), PANGAEA, https://doi.org/10.1594/PANGAEA.787668, 2012. a

4. Arneth, A., Miller, P. A., Scholze, M., Hickler, T., Schurgers, G., Smith, B., and Prentice, I. C.: CO2 inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry, Geophys. Res. Lett., 34, L18813, https://doi.org/10.1029/2007GL030615, 2007a. a, b

5. Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, https://doi.org/10.5194/acp-7-31-2007, 2007b. a, b

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3