A dynamic and thermodynamic analysis of the 11 December 2017 tornadic supercell in the Highveld of South Africa
-
Published:2021-04-28
Issue:2
Volume:2
Page:373-393
-
ISSN:2698-4016
-
Container-title:Weather and Climate Dynamics
-
language:en
-
Short-container-title:Weather Clim. Dynam.
Author:
Lekoloane Lesetja E.ORCID, Bopape Mary-Jane M., Rambuwani Tshifhiwa GiftORCID, Ndarana Thando, Landman Stephanie, Mofokeng Puseletso, Gijben Morne, Mohale Ngwako
Abstract
Abstract. On 11 December 2017, a tornadic supercell initiated and moved through the northern Highveld region of South Africa for 7 h. A tornado from this supercell led to extensive damage to infrastructure and caused injury to and displacement of over 1000 people in Vaal Marina, a town located in the extreme south of the Gauteng Province. In this study we conducted an analysis in order to understand the conditions that led to the severity of this supercell, including the formation of a tornado. The dynamics and thermodynamics of two configurations of the Unified Model (UM) were also analysed to assess their performance in predicting this tornadic supercell. It was found that this supercell initiated as part of a cluster of multicellular thunderstorms over a dry line, with three ingredients being important in strengthening and maintaining it for 7 h: significant surface to mid-level vertical shear, an abundance of low-level warm moisture influx from the tropics and Mozambique Channel, and steep mid-level lapse rates. It was also found that the 4.4 km grid spacing configuration of the model (SA4.4) performed better than the 1.5 km grid spacing version. SA1.5 underestimated the low-level warm moisture advection and convergence, and missed the storm initiation. SA4.4 captured the supercell; however, the mid-level vorticity was found to be 1 order of magnitude smaller than that of a typical mesocyclone. A grid length of 4.4 km is too coarse to fully capture the details of a mesocyclone, which may also explain why the model underestimated the surface to mid-level wind shear and low-level horizontal mass and moisture flux convergence. Future investigations will involve experimental research over the Highveld region of South Africa to understand mesoscale and local dynamics processes responsible for tornadogenesis in some severe storms. Such a study, to the best of our knowledge, has never been conducted.
Funder
African Academy of Sciences
Publisher
Copernicus GmbH
Reference67 articles.
1. Adger, W. N., Huq, S., Brown, K., Conway, D., and Hulme, M.: Adaptation to climate change in the developing world, Prog. Dev. Stud., 3, 179–195, https://doi.org/10.1191/1464993403ps060oa, 2003. 2. Awojobi, O. N. and Tetteh, J.: The impacts of climate change in Africa: A review of the scientific literature, J. Interdiscip. Multidiscip. Res., 5, 39–52, 2017. 3. Banacos, P. C. and Schultz, D. M.: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives, Weather Forecast., 20, 351–366, https://doi.org/10.1175/WAF858.1, 2005. 4. Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 5. Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo, R. and Yanda, P.: Africa. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University Press, Cambridge, UK, 433–467, 2007.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|