Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign

Author:

Pestana Steven J.ORCID,Chickadel C. Chris,Lundquist Jessica D.

Abstract

Abstract. The high temporal resolution of thermal infrared imagery from the Geostationary Operational Environmental Satellites R-series (GOES-R) presents an opportunity to observe mountain snow and forest temperatures over the full diurnal cycle. However, the off-nadir views of these imagers may impact or bias temperature observations, especially when viewing a surface composed of both snow and forests. We used GOES-16 and -17 thermal infrared brightness temperature observations of a flat snow- and forest-covered study site at Grand Mesa, Colorado, USA, to characterize how forest coverage and view angle impact these observations. These two geostationary satellites provided views of the study area from the southeast (134.1° azimuth, 33.5° elevation) and southwest (221.2° azimuth, 35.9° elevation), respectively. As part of the NASA SnowEx field campaign in February 2020, coincident brightness temperature observations from ground-based and airborne IR sensors were collected to compare with those from the geostationary satellites. Observations over the course of 2 cloud-free days spanned the entire study site. The brightness temperature observations from each dataset were compared to find their relative differences and how those differences may have varied over time and/or as a function of varying forest cover across the study area. GOES-16 and -17 brightness temperatures were found to match the diurnal cycle and temperature range within ∼ 1 h and ± 3 K of ground-based observations. GOES-16 and -17 were both biased warmer than nadir-looking airborne IR and ASTER observations. The warm biases were higher at times when the sun–satellite phase angle was near its daily minimum. The phase angle, the angle between the direction of incoming solar illumination and the direction from which the satellite is viewing, reached daily minimums in the morning for GOES-16 and afternoon for GOES-17. In morning observations, warm biases in GOES-16 brightness temperature were greater for pixels that contained more forest coverage. The observations suggest that a “thermal infrared shadow-hiding” effect may be occurring, where the geostationary satellites are preferentially seeing the warmer sunlit sides of trees at different times of day. These biases are important to understand for applications using GOES-R brightness temperatures or derived land surface temperatures (LSTs) over areas with surface roughness features, such as forests, that could exhibit a thermal infrared shadow-hiding effect.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3