SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition

Author:

Kortum KarlORCID,Singha Suman,Spreen GunnarORCID,Hutter NilsORCID,Jutila ArttuORCID,Haas ChristianORCID

Abstract

Abstract. Automated sea ice charting from synthetic aperture radar (SAR) has been researched for more than a decade, and we are still not close to unlocking the full potential of automated solutions in terms of resolution and accuracy. The central complications arise from ground truth data not being readily available in the polar regions. In this paper, we build a data set from 20 near-coincident x-band SAR acquisitions and as many airborne laser scanner (ALS) measurements from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), between October and May. This data set is then used to assess the accuracy and robustness of five machine-learning-based approaches by deriving classes from the freeboard, surface roughness (standard deviation at 0.5 m correlation length) and reflectance. It is shown that there is only a weak correlation between the radar backscatter and the sea ice topography. Accuracies between 44 % and 66 % and robustness between 71 % and 83 % give a realistic insight into the performance of modern convolutional neural network architectures across a range of ice conditions over 8 months. It also marks the first time algorithms have been trained entirely with labels from coincident measurements, allowing for a probabilistic class retrieval. The results show that segmentation models able to learn from the class distribution perform significantly better than pixel-wise classification approaches by nearly 20 % accuracy on average.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3