Sulfur cycle and sulfate radiative forcing simulated from a coupled global climate-chemistry model
-
Published:2010-04-21
Issue:8
Volume:10
Page:3693-3709
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Tsai I.-C.,Chen J.-P.,Lin P.-Y.,Wang W.-C.,Isaksen I. S. A.
Abstract
Abstract. The sulfur cycle and radiative effects of sulfate aerosol on climate are studied with a Global tropospheric Climate-Chemistry Model in which chemistry, radiation and dynamics are fully coupled. Production and removal mechanisms of sulfate are analyzed for the conditions of natural and anthropogenic sulfur emissions. Results show that the 1985 anthropogenic emission tripled the global SO2 and sulfate loadings from its natural value of 0.16 and 0.10 Tg S, respectively. Under natural conditions, the fraction of sulfate produced in-cloud is 74%; whereas with anthropogenic emissions, the fraction of in-cloud sulfate production slightly increased to 76%. Lifetimes of SO2 and sulfate under polluted conditions are estimated to be 1.7 and 2.0 days, respectively. The tripling of sulfate results in a direct radiative forcing of −0.43 W m−2 (clear-sky) or −0.24 W m−2 (all-sky), and a significant first indirect forcing of −1.85 W m−2, leading to a mean global cooling of about 0.1 K. Regional forcing and responses are significantly stronger than the global values. The first indirect forcing is sensitive to the relationship between aerosol concentration and cloud droplet number concentration which requires further investigation. Two aspects of chemistry-climate interaction are addressed. Firstly, the coupling effects lead to a slight decrease of 1% in global sulfate loading for both the cases of natural and anthropogenic added sulfur emissions. Secondly, only the indirect effect of sulfate aerosols yields significantly stronger signals in changes of near surface temperature and sulfate loading than changes due to intrinsic climate variability, while other responses to the indirect effect and all responses to the direct effect are below noise level.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference85 articles.
1. Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 2. Amels, P., Elias, H., Götz, U., Steingens, U., and Wannowius, K. J.: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur (IV) in aqueous solution. in: Heterogeneous and Liquid Phase Processes, Springer-Verlag, New York, USA, 77–88, 1996. 3. Anderson, T. L., Charlson, R. J., Schwartz, S. E., Knutti, R., Boucher, O., Rodhe, H., and Heintzenberg, J.: Climate forcing by aerosols – a hazy picture, Science, 300, 1103–1104, 2003. 4. Audiffren, N., Buisson, E., Cautenet, S., and Chaumerliac, N.: Photolytic impact of a stratocumulus cloud layer upon the chemistry of an offshore advected plume of pollutants during the NARE 1993 intensive experiment: a numerical study, Atmos. Res., 70, 89–108, 2004. 5. Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarraso'n, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239–29253, 1996.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|