Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies

Author:

Pei Xiangyu,Meng Yikan,Chen Yueling,Liu Huichao,Song Yao,Xu Zhengning,Zhang FeiORCID,Preston Thomas C.,Wang Zhibin

Abstract

Abstract. Single particle analysis is essential for a better understanding of the particle transformation process and to predict its environmental impact. In this study, we developed an aerosol optical tweezer (AOT) Raman spectroscopy system to investigate the phase state and morphology of suspended aerosol droplets in real time. The system comprises four modules: optical trapping, reaction, illumination and imaging, and detection. The optical trapping module utilizes a 532 nm laser and a 100 × oil immersion objective to stably trap aerosol droplets within 30 s. The reaction module allows us to adjust relative humidity (RH) and introduce reaction gases into the droplet levitation chamber, facilitating experiments to study liquid–liquid phase transitions. The illumination and imaging module employs a high-speed camera to monitor the trapped droplets, while the detector module records Raman scattering light. We trapped sodium chloride (NaCl) and 3-methyl glutaric acid (3-MGA) mixed droplets to examine RH-dependent morphology changes. Liquid–liquid phase separation (LLPS) occurred when RH was decreased. Additionally, we introduced ozone and limonene/pinene to generate secondary organic aerosol (SOA) particles in situ, which collided with the trapped droplet and dissolved in it. To determine the trapped droplet's characteristics, we utilized an open-source program based on Mie theory to retrieve diameter and refractive index from the observed whispering gallery modes (WGMs) in Raman spectra. It is found that mixed droplets formed core–shell morphology when RH was decreased, and the RH dependence of the droplets' phase transitions generated by different SOA precursors varied. Our AOT system serves as an essential experimental platform for in situ assessment of morphology and phase state during dynamic atmospheric processes.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3