Opinion: The importance of historical and paleoclimate aerosol radiative effects

Author:

Mahowald Natalie M.ORCID,Li LongleiORCID,Albani SamuelORCID,Hamilton Douglas S.,Kok Jasper F.ORCID

Abstract

Abstract. Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols affected the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem. Because of the lack of information we do not seek here to determine the change in the radiative forcing due to aerosol changes but rather to estimate the uncertainties in those changes. Here we argue that current uncertainties from emission uncertainties (90 % confidence interval range spanning 2.8 W m−2) are just as large as model spread uncertainties (2.8 W m−2) in calculating preindustrial to present-day aerosol radiative effects. There are no estimates of radiative forcing for important aerosols such as wildfire and dust aerosols in most paleoclimate time periods. However, qualitative analysis of paleoclimate proxies suggests that changes in aerosols between different past climates are similar in magnitude to changes in aerosols between the preindustrial and present day; plus, there is the added uncertainty from the variability in aerosols and fires in the preindustrial. From the limited literature we crudely estimate a paleoclimate aerosol uncertainty for the Last Glacial Maximum relative to preindustrial of 4.8 W m−2, and we estimate the uncertainty in the aerosol feedback in the natural Earth system over the paleoclimate (Last Glacial Maximum to preindustrial) to be about 3.2 W m−2 K−1. In order to more accurately assess the uncertainty in historical aerosol radiative effects, we propose a new model intercomparison project, which would include multiple plausible emission scenarios tested across a range of state-of-the-art climate models over the historical period. These emission scenarios would then be compared to the available independent aerosol observations to constrain which are most probable. In addition, future efforts should work to characterize and constrain paleo-aerosol forcings and uncertainties. Careful propagation of aerosol uncertainties in the literature is required to ensure an accurate quantification of uncertainties in projections of future climate changes.

Funder

Biological and Environmental Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference113 articles.

1. Albani, S. and Mahowald, N. M.: Paleodust insights onto dust impacts on climate, J. Climate, 32, 7897–7913, https://doi.org/10.1175/jcli-d-18-0742.1, 2019.

2. Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Syst., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.

3. Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Goman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S. G., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., McGee, D., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., and Sun, J.: Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives, Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, 2015.

4. Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V., and Delmonte, B.: Aerosol-Climate Interactions During the Last Glacial Maximum, Curr. Clim. Change Rep., 4, 99–114, https://doi.org/10.1007/s40641-018-0100-7, 2018.

5. Allen, M. R., Fuglestvedt, J. S., Shine, K. P., Reisinger, A., Pierrehumbert, R. T., and Forster, P. M.: New use of global warming potentials to compare cumulative and short-lived climate pollutants, Nat. Clim. Change, 6, 773–776, https://doi.org/10.1038/NCLIMATE2998, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3