The effects of warm-air intrusions in the high Arctic on cirrus clouds
-
Published:2024-05-24
Issue:10
Volume:24
Page:5971-5987
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Dekoutsidis GeorgiosORCID, Wirth MartinORCID, Groß SilkeORCID
Abstract
Abstract. Warm-air intrusions (WAIs) are responsible for the transportation of warm and moist air masses from the mid-latitudes into the high Arctic (> 70° N). In this work, we study cirrus clouds that form during WAI events (WAI cirrus) and during undisturbed Arctic conditions (AC cirrus) and investigate possible differences between the two cloud types based on their macrophysical and optical properties with a focus on relative humidity over ice (RHi). We use airborne measurements from the combined high-spectral-resolution and differential-absorption lidar, WALES, performed during the HALO-(AC)3 campaign. We classify each research flight and the measured clouds as either AC or WAI, based on the ambient conditions, and study the macrophysical, geometrical and optical characteristics for each cirrus group. As our main parameter we choose the relative humidity over ice (RHi), which we calculate RHi by combining the lidar water vapor measurements with model temperatures. Ice formation occurs at certain RHi values depending on the dominant nucleation process taking place. RHi can thus be used as an indication of the nucleation process and the structure of cirrus clouds. We find that during WAI events the Arctic is warmer and moister and WAI cirrus clouds are both geometrically and optically thicker compared to AC cirrus. WAI cirrus clouds and the layer directly surrounding them are more frequently supersaturated, also at high supersaturations over the threshold for homogeneous ice nucleation (HOM). AC cirrus clouds have a supersaturation-dominated cloud top and a subsaturated cloud base. WAI cirrus clouds also have high supersaturations at cloud top but also at cloud base.
Funder
Deutscher Akademischer Austauschdienst Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference86 articles.
1. Ali, S. M. and Pithan, F.: Following moist intrusions into the Arctic using SHEBA observations in a Lagrangian perspective, Q. J. Roy. Meteor. Soc., 146, 3522–3533, https://doi.org/10.1002/qj.3859, 2020. 2. Beer, C. G., Hendricks, J., and Righi, M.: A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC, Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, 2022. 3. Binder, H., Boettcher, M., Grams, C. M., Joos, H., Pfahl, S., and Wernli, H.: Exceptional Air Mass Transport and Dynamical Drivers of an Extreme Wintertime Arctic Warm Event, Geophys. Res. Lett., 44, 12028–12036, https://doi.org/10.1002/2017GL075841, 2017. 4. Bossioli, E., Sotiropoulou, G., Methymaki, G., and Tombrou, M.: Modeling Extreme Warm-Air Advection in the Arctic During Summer: The Effect of Mid-Latitude Pollution Inflow on Cloud Properties, J. Geophys. Res.-Atmos., 126, e2020JD033291, https://doi.org/10.1029/2020JD033291, 2021. 5. Campbell, J. R., Dolinar, E. K., Lolli, S., Fochesatto, G. J., Gu, Y., Lewis, J. R., Marquis, J. W., McHardy, T. M., Ryglicki, D. R., and Welton, E. J.: Cirrus Cloud Top-of-the-Atmosphere Net Daytime Forcing in the Alaskan Subarctic from Ground-Based MPLNET Monitoring, J. Appl. Meteorol. Clim., 60, 51–63, https://doi.org/10.1175/JAMC-D-20-0077.1, 2021.
|
|