Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements

Author:

Buchmann MoritzORCID,Begert MichaelORCID,Brönnimann Stefan,Marty ChristophORCID

Abstract

Abstract. Daily measurements of snow depth and snowfall can vary strongly over short distances. However, it is not clear if there is a seasonal dependence in these variations and how they impact common snow climate indicators based on mean values, as well as estimated return levels of extreme events based on maximum values. To analyse the impacts of local-scale variations we compiled a unique set of parallel snow measurements from the Swiss Alps consisting of 30 station pairs with up to 77 years of parallel data. Station pairs are usually located in the same villages (or within 3 km horizontal and 150 m vertical distances). Investigated snow climate indicators include average snow depth, maximum snow depth, sum of new snow, days with snow on the ground, days with snowfall, and snow onset and disappearance dates, which are calculated for various seasons (December to February (DJF), November to April (NDJFMA), and March to April (MA)). We computed relative and absolute error metrics for all these indicators at each station pair to demonstrate the potential variability. We found the largest relative inter-pair differences for all indicators in spring (MA) and the smallest in DJF. Furthermore, there is hardly any difference between DJF and NDJFMA, which show median variations of less than 5 % for all indicators. Local-scale variability ranges between less than 24 % (DJF) and less than 43 % (MA) for all indicators and 75 % of all station pairs. The highest percentage (90 %) of station pairs with variability of less than 15 % is observed for days with snow on the ground. The lowest percentage (30 %) of station pairs with variability of less than 15 % is observed for average snow depth. Median differences of snow disappearance dates are rather small (3 d) and similar to the ones found for snow onset dates (2 d). An analysis of potential sunshine duration could not explain the higher variabilities in spring. To analyse the impact of local-scale variations on the estimation of extreme events, 50-year return levels were quantified for maximum snow depth and maximum 3 d new snow sum, which are often used for avalanche prevention measures. The found return levels are within each other's 95 % confidence intervals for all (but three) station pairs, revealing no striking differences. The findings serve as an important basis for our understanding of variabilities of commonly used snow indicators and extremal indices. Knowledge about such variabilities in combination with break-detection methods is the groundwork in view of any homogenization efforts regarding snow time series.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3