Tropospheric NO<sub>2</sub> column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation

Author:

Chen D.,Zhou B.,Beirle S.,Chen L. M.,Wagner T.

Abstract

Abstract. Zenith-sky scattered sunlight observations using differential optical absorption spectroscopy (DOAS) technique were carried out in Shanghai, China (31.3° N, 121.5° E) since December 2006. At this polluted urban site, the measurements provided NO2 total columns in the daytime. Here, we present a new method to extract time series of tropospheric vertical column densities (VCDs) of NO2 from these observations. The derived tropospheric NO2 VCDs are important quantities for the estimation of emissions and for the validation of satellite observations. Our method makes use of assumptions on the relative NO2 height profiles and the diurnal variation of stratospheric NO2 VCDs. The main error sources arise from the uncertainties in the estimated stratospheric slant column densities (SCDs) and the determination of tropospheric NO2 air mass factor (AMF). For a polluted site like Shanghai, the accuracy of our method is conservatively estimated to be <25% for solar zenith angle (SZA) lower than 70°. From simultaneously performed long-path DOAS measurements, the NO2 surface concentrations at the same site were observed and the corresponding tropospheric NO2 VCDs were estimated using the assumed seasonal NO2 profiles in the planetary boundary layer (PBL). By making a comparison between the tropospheric NO2 VCDs from zenith-sky and long-path DOAS measurements, it is found that the former provides more realistic information about total tropospheric pollution than the latter, so it's more suitable for satellite data validation. A comparison between the tropospheric NO2 VCDs from ground-based zenith-sky measurements and SCIAMACHY was also made. Satellite validation for a strongly polluted area is highly needed, but exhibits also a great challenge. Our comparison shows good agreement, considering in particular the different spatial resolutions between the two measurements. Remaining systematic deviations are most probably related to the uncertainties of satellite data caused by the assumptions on aerosol properties as well as the layer heights of aerosols and NO2.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3