Ensemble flood simulation for a small dam catchment in Japan using nonhydrostatic model rainfalls – Part 2: Flood forecasting using 1600-member 4D-EnVar-predicted rainfalls

Author:

Kobayashi Kenichiro,Duc Le,Oizumi Tsutao,Saito Kazuo,

Abstract

Abstract. This paper is a continuation of the authors' previous paper (Part 1) on the feasibility of ensemble flood forecasting for a small dam catchment (Kasahori dam; approx. 70 km2) in Niigata, Japan, using a distributed rainfall–runoff model and rainfall ensemble forecasts. The ensemble forecasts were given by an advanced four-dimensional, variational-ensemble assimilation system using the Japan Meteorological Agency nonhydrostatic model (4D-EnVar-NHM). A noteworthy feature of this system was the use of a very large number of ensemble members (1600), which yielded a significant improvement in the rainfall forecast compared to Part 1. The ensemble flood forecasting using the 1600 rainfalls succeeded in indicating the necessity of emergency flood operation with the occurrence probability and enough lead time (e.g., 12 h) with regard to an extreme event. A new method for dynamical selection of the best ensemble member based on the Bayesian reasoning with different evaluation periods is proposed. As the result, it is recognized that the selection based on Nash–Sutcliffe efficiency (NSE) does not provide an exact discharge forecast with several hours lead time, but it can provide some trend in the near future.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review, J. Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009.

2. Doucet, A., de Freitas, N., and Gordon, N. J.: Sequential Monte Carlo Methods in Practice, Springer-Verlag, New York, USA, 2001.

3. Duc, L. and Saito, K.: A 4DEnVAR data assimilation system without vertical localization using the K computer, in: Japan Geoscience Union meeting, 20–25 May 2017, Chiba, Japan, AAS12-P04, 2017.

4. Duc, L. and Saito, K.: Verification in the presence of observation errors: Bayesian point of view, Q. J. Roy. Meteorol. Soc., 144, 1063–1090, https://doi.org/10.1002/qj.3275, 2018.

5. Fletcher, S. J.: Data Assimilation for the Geosciences: From Theory to Application, Elsevier, Amsterdam, the Netherlands, 2017.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3