High-accuracy coastal flood mapping for Norway using lidar data
-
Published:2020-02-27
Issue:2
Volume:20
Page:673-694
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Breili Kristian,Simpson Matthew James Ross,Klokkervold Erlend,Roaldsdotter Ravndal Oda
Abstract
Abstract. Using new high-accuracy light detection and ranging (lidar) elevation data we generate coastal flooding maps for Norway. Thus far, we have mapped ∼80 % of the coast, for which we currently have data of sufficient accuracy to perform our analysis. Although Norway is generally at low risk from sea level rise largely owing to its steep topography and land uplift due to glacial isostatic adjustment, the maps presented here show that, on local scales, many parts of the coast are potentially vulnerable to flooding. There is a considerable amount of infrastructure at risk along the relatively long and complicated coastline. Nationwide we identify a total area of 400 km2, 105 000 buildings, and 510 km of roads that are at risk of flooding from a 200-year storm surge event at present. These numbers will increase to 610 km2, 137 000, and 1340 km with projected sea level rise to 2090 (95th percentile of RCP8.5 as recommended in planning). We find that some of our results are likely biased high owing to erroneous mapping (at least for lower water levels close to the tidal datum which delineates the coastline). A comparison of control points from different terrain types indicates that the elevation model has a root-mean-square error of 0.26 m and is the largest source of uncertainty in our mapping method. The coastal flooding maps and associated statistics are freely available, and alongside the development of coastal climate services, will help communicate the risks of sea level rise and storm surge to stakeholders. This will in turn aid coastal management and climate adaptation work in Norway.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference47 articles.
1. Almås, A.-J. and Hygen, H. O.: Impacts of sea level rise towards 2100 on
buildings in Norway, Build. Res. Inf., 40, 245–259,
https://doi.org/10.1080/09613218.2012.690953, 2012. a, b, c, d, e, f 2. Aunan, K. and Romstad, B.: Strong coasts and vulnerable communities: Potential implications of accelerated sea-level rise for Norway, J. Coast. Res., 24, 403–409, https://doi.org/10.2112/07A-0013.1, 2008. a, b, c 3. Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B.: The land ice
contribution to sea level during the satellite era, Environ. Res. Lett., 13, 063008, https://doi.org/10.1088/1748-9326/aac2f0, 2018. a 4. Breili, K., Simpson, M. J. R., and Nilsen, J. E. Ø.: Observed Sea-Level
Changes along the Norwegian Coast, J. Mar. Sci. Eng., 5, 29, https://doi.org/10.3390/jmse5030029, 2017. a 5. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level
change, in: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, chap. 13, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, ISBN 978-1-107-05799-1, 1137–1216, 2013. a, b
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|