Improved accuracy and efficiency of flood inundation mapping of low-, medium-, and high-flow events using the AutoRoute model
-
Published:2020-02-27
Issue:2
Volume:20
Page:625-641
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Follum Michael L.ORCID, Vera Ricardo, Tavakoly Ahmad A.ORCID, Gutenson Joseph L.
Abstract
Abstract. This article presents improvements and the development of a postprocessing module for the regional-scale flood mapping tool, AutoRoute. The accuracy of this model to simulate low-, medium-, and high-flow-rate scenarios is demonstrated at seven test sites within the US. AutoRoute is one of the tools used to create high-resolution flood inundation maps at regional to continental scales, but it has previously only been tested using extreme flood events. Modifications to the AutoRoute model and postprocessing scripts are shown to improve accuracy (e.g., average F value increase of 17.5 % for low-flow events) and computational efficiency (simulation time reduced by over 40 %) when compared to previous versions. Although flood inundation results for low-flow events are shown to be comparable with published values (average F value of 63.3 %), the model results tend to be overestimated, especially in flatter terrain. Higher-flow scenarios tend to be more accurately simulated (average F value of 77.5 %). With improved computational efficiency and the enhanced ability to simulate both low- and high-flow scenarios, the AutoRoute model may be well suited to provide first-order estimates of flooding within an operational, regional- to continental-scale hydrologic modeling framework.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference45 articles.
1. Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., and Fekete, B. M.: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556, 539–556, https://doi.org/10.1016/j.jhydrol.2017.11.036, 2018. 2. Ali, A. M., Solomatine, D. P., and Di Baldassarre, G.: Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods, Hydrol. Earth Syst. Sci., 19, 631–643, https://doi.org/10.5194/hess-19-631-2015, 2015. 3. Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000. 4. Benedict, S. T., Caldwell, A. W., and Clark, J. M.: Flood-inundation maps for the Saluda River from Old Easley Bridge Road to Saluda Lake Dam near Greenville, South Carolina, US Geological Survey Scientific Investigations Map 3244, US Geological Survey, Reston, Virginia, USA, https://doi.org/10.3133/sim3244, 2013. 5. Brandt, S. A. and Lim, N. J.: Importance of river bank and floodplain slopes on the accuracy of flood inundation mapping, in: River Flow 2012: Vol. 2, Proceedings of the International Conference on Fluvial Hydraulics, San 5–7 September 2012, José, Costa Rica, edited by: Murillo Muñoz, R. E., CRC Press/Balkema (Taylor & Francis), Leiden, the Netherlands, 1015–1020, 2012.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|