Including informal housing in slope stability analysis – an application to a data-scarce location in the humid tropics

Author:

Bozzolan ElisaORCID,Holcombe Elizabeth,Pianosi FrancescaORCID,Wagener ThorstenORCID

Abstract

Abstract. Empirical evidence from the humid tropics shows that informal housing can increase the occurrence of rainfall-triggered landslides. However, informal housing is rarely accounted for in landslide hazard assessments at community or larger scales. We include informal-housing influences (vegetation removal, slope cutting, house loading, and point water sources) in a slope stability analysis. We extend the mechanistic model CHASM (Combined Hydrology and Stability Model) to include leaking pipes, septic tanks, and roof gutters. We apply this extended model (CHASM+) in a region of the humid tropics using a stochastic framework to account for uncertainties related to model parameters and drivers (including climate change). We find slope cutting to be the most detrimental construction activity for slope stability, and we quantify its influence and that of other destabilising factors. When informal housing is present, more failures (+85 %) are observed in slopes that would otherwise have had low landslide susceptibility and for high-intensity, short-duration precipitations. As a result, the rainfall threshold for triggering landslides is lower when compared to non-urbanised slopes and comparable to those found empirically for similar urbanised regions. Finally, low cost-effective “low regrets” mitigation actions are suggested to tackle the main landslide drivers identified in the study area. The proposed methodology and rainfall threshold calculation are suitable for data-scarce contexts, i.e. when limited field measurements or landslide inventories are available.

Funder

EPSRC Centre for Doctoral Training in Medical Imaging

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3