CRHyME (Climatic Rainfall Hydrogeological Model Experiment): a new model for geo-hydrological hazard assessment at the basin scale

Author:

Abbate Andrea,Mancusi Leonardo,Frigerio Antonella,Papini Monica,Longoni Laura

Abstract

Abstract. This work presents the new model called CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment), a tool for the geo-hydrological hazard evaluation. CRHyME is a physically based and spatially distributed model written in Python language and represents an extension of the classic hydrological models that simulate inflows-outflows at the basin scale. A series of routines have been integrated to describe the phenomena of geo-hydrological instabilities such as the 10 triggering of shallow landslides as well as debris flows, catchment erosion, and sediment transport into the river. These phenomena are generally decoupled with respect to the continuous hydrological simulation while in CRHyME they are quantitatively and simultaneously evaluated through a multi-hazard approach. CRHyME has been tested on some case studies located in Italian basins. Valtellina and Emilia's areas were considered for the calibration and validation procedures of the model thanks also to the availability of literature data concerning past occurred 15 geo-hydrological instability phenomena. Calibration and validation of the model conducted on presented case studies have been assessed through some hydrological indexes such as NSE (Nash–Sutcliffe Efficiency) and RMSE (Root Mean Square Error) while for landslide phenomena the ROC (Receiver Operating Characteristic) methodology was applied. CHRyME has been able to: 1) reconstruct the surface runoff at the reference hydrometric stations located at the outlets of the basins, 2) estimate the solid transport at some hydropower reservoirs compared to the reference data, and 3) evaluate the triggering of 20 shallow landslides and debris flows compared to those recorded in the literature. The ranking has shown a rather good performance of the model in terms of numerical conservativity of water and solid balances, revealing suitable not only for back-analysis studies but also as an efficient tool for Civil Protection multi-hazard assessment.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3