Plant functional traits modulate the effects of soil acidification on above- and belowground biomass

Author:

Feng Xue,Wang RuzhenORCID,Li TianpengORCID,Cai Jiangping,Liu Heyong,Li Hui,Jiang Yong

Abstract

Abstract. Atmospheric sulfur (S) deposition has been increasingly recognized as a major driver of soil acidification. However, little is known about how soil acidification influences above- and belowground biomass by altering leaf and root traits. We conducted a 3-year S-addition experiment to simulate soil acidification in a meadow. Grass (Leymus chinensis (Trin.) Tzvelev) and sedge (Carex duriuscula C.A.Mey) species were chosen to evaluate the linkage between plant traits and biomass. Sulfur addition led to soil acidification and nutrient imbalances. Soil acidification decreased specific leaf area (SLA) but increased leaf dry-matter content (LDMC) in L. chinensis, showing a conservative strategy and thus suppressing aboveground instead of belowground biomass. However, in C. duriuscula, soil acidification increased plant height and root nutrients (N, P, S, and Mn), favoring competition for natural resources through enhanced above- and belowground biomass, i.e., adoption of an acquisitive strategy. Increased soil acidity resulted in an overall reduction in aboveground community biomass by 3 %–33 %, but it led to an increase in community root biomass by 11 %–22 % due to upregulation as a result of higher soil nutrient availability. Our results demonstrate that both above- and belowground plant biomass is affected by S-induced acidification. Understanding the linkage between plant biomass and functional traits contributes to a better understanding of plant–soil feedback in grassland ecosystems.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3