Remote atomic clock synchronization via satellites and optical fibers
-
Published:2011-07-29
Issue:
Volume:9
Page:1-7
-
ISSN:1684-9973
-
Container-title:Advances in Radio Science
-
language:en
-
Short-container-title:Adv. Radio Sci.
Author:
Piester D.,Rost M.,Fujieda M.,Feldmann T.,Bauch A.
Abstract
Abstract. In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at the Physikalisch-Technische Bundesanstalt (PTB) without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 40 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of Coordinated Universal Time UTC. Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems.
Publisher
Copernicus GmbH
Reference32 articles.
1. Amemiya, M., Imae, M., Fujii, Y., Suzuyama, T., Ohshima, S., Aoyagi, S., Takigawa, Y., and Kihara, M.: Time and Frequency Transfer and Dissemination Methods Using Optical Fiber Network, IEEJ Trans. FM, 126, 458–463, 2006. 2. Amemiya, M., Imae, M., Fujii, Y., Suzuyama, T., Hong, F.-L., and Takamoto, M.: Precise Frequency Comparison System Using Bidirectional Optical Amplifiers, IEEE Trans. Instr. Meas., 59, 631–640, 2010. 3. Arias, E. F. and Panfillo, G.: International time scales at the BIPM: impact and applications, Proc. 14th International Metrology Congress, Paris, 2009. 4. Arias, E. F.: Time scales and relativity, Proc. International School of Physics "Enrico Fermi" Course CLXVI Metrology and Fundamental Constants, edited by: T. W. Hänsch et al., IOS Press, Amsterdam, 367–392, 2007. 5. Bauch, A., Achkar, J., Bize, S., Calonico, D., Dach, R., Hlava\\'c, R., Lorini, L., Parker, T., Petit, G., Piester, D., Szymaniec, K., and Uhrich, P.: Comparison between frequency standards in Europe and the USA at the 10$^-15$ uncertainty level, Metrologia, 43, 109–120, 2006.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|