Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game
-
Published:2016-08-02
Issue:8
Volume:20
Page:3109-3128
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Arnal LouiseORCID, Ramos Maria-HelenaORCID, Coughlan de Perez Erin, Cloke Hannah LouiseORCID, Stephens ElisabethORCID, Wetterhall Fredrik, van Andel Schalk Jan, Pappenberger FlorianORCID
Abstract
Abstract. Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecast uncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty in transforming the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called "How much are you prepared to pay for a forecast?". The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydro-meteorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants' willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference36 articles.
1. Anaman, K. A., Lellyett, S. C., Drake, L., Leigh, R. J., Henderson-Sellers, A., Noar, P. F., Sullivan, P. J., and Thampapillai, D. J.: Benefits of meteorological services: evidence from recent research in Australia, Meteorol. Appl., 5, 103–115, https://doi.org/10.1017/S1350482798000668, 1998. 2. Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 3. Boucher, M. A., Tremblay, D., Delorme, L., Perreault, L., and Anctil, F.: Hydro-economic assessment of hydrological forecasting systems, J. Hydrol., 416-417, 133–144, https://doi.org/10.1016/j.jhydrol.2011.11.042, 2012. 4. Breidert, C., Hahsler, M., and Reutterer, T.: A review of methods for measuring willingness-to-pay, Innovative Marketing, 2, 8–32, 2006. 5. Buizza, R.: The value of probabilistic prediction, Atmos. Sci. Lett., 9, 36–42, https://doi.org/10.1002/asl.170, 2008.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|