Importance of maximum snow accumulation for summer low flows in humid catchments

Author:

Jenicek MichalORCID,Seibert JanORCID,Zappa MassimilianoORCID,Staudinger MariaORCID,Jonas Tobias

Abstract

Abstract. Winter snow accumulation obviously has an effect on the following catchment runoff. The question is, however, how long this effect lasts and how important it is compared to rainfall inputs. Here we investigate the relative importance of snow accumulation on one critical aspect of runoff, namely the summer low flow. This is especially relevant as the expected increase of air temperature might result in decreased snow storage. A decrease of snow will affect soil and groundwater storages during spring and might cause low streamflow values in the subsequent warm season. To understand these potential climate change impacts, a better evaluation of the effects of inter-annual variations in snow accumulation on summer low flow under current conditions is central. The objective in this study was (1) to quantify how long snowmelt affects runoff after melt-out and (2) to estimate the sensitivity of catchments with different elevation ranges to changes in snowpack. To find suitable predictors of summer low flow we used long time series from 14 Alpine and pre-Alpine catchments in Switzerland and computed different variables quantifying winter and spring snow conditions. In general, the results indicated that maximum winter snow water equivalent (SWE) influenced summer low flow, but could expectedly only partly explain the observed inter-annual variations. On average, a decrease of maximum SWE by 10 % caused a decrease of minimum discharge in July by 6–9 % in catchments higher than 2000 m a.s.l. This effect was smaller in middle- and lower-elevation catchments with a decrease of minimum discharge by 2–5 % per 10 % decrease of maximum SWE. For higher- and middle-elevation catchments and years with below-average SWE maximum, the minimum discharge in July decreased to 70–90 % of its normal level. Additionally, a reduction in SWE resulted in earlier low-flow occurrence in some cases. One other important factor was the precipitation between maximum SWE and summer low flow. When only dry preceding conditions in this period were considered, the importance of maximum SWE as a predictor of low flows increased. We assessed the sensitivity of individual catchments to the change of maximum SWE using the non-parametric Theil–Sen approach as well as an elasticity index. Both sensitivity indicators increased with increasing mean catchment elevation, indicating a higher sensitivity of summer low flow to snow accumulation in Alpine catchments compared to lower-elevation pre-Alpine catchments.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Grantová Agentura České Republiky

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3