Technical note: Multiple wavelet coherence for untangling scale-specific and
localized multivariate relationships in geosciences
-
Published:2016-08-08
Issue:8
Volume:20
Page:3183-3191
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Hu WeiORCID, Si Bing Cheng
Abstract
Abstract. The scale-specific and localized bivariate relationships in geosciences can be revealed using bivariate wavelet coherence. The objective of this study was to develop a multiple wavelet coherence method for examining scale-specific and localized multivariate relationships. Stationary and non-stationary artificial data sets, generated with the response variable as the summation of five predictor variables (cosine waves) with different scales, were used to test the new method. Comparisons were also conducted using existing multivariate methods, including multiple spectral coherence and multivariate empirical mode decomposition (MEMD). Results show that multiple spectral coherence is unable to identify localized multivariate relationships, and underestimates the scale-specific multivariate relationships for non-stationary processes. The MEMD method was able to separate all variables into components at the same set of scales, revealing scale-specific relationships when combined with multiple correlation coefficients, but has the same weakness as multiple spectral coherence. However, multiple wavelet coherences are able to identify scale-specific and localized multivariate relationships, as they are close to 1 at multiple scales and locations corresponding to those of predictor variables. Therefore, multiple wavelet coherence outperforms other common multivariate methods. Multiple wavelet coherence was applied to a real data set and revealed the optimal combination of factors for explaining temporal variation of free water evaporation at the Changwu site in China at multiple scale-location domains. Matlab codes for multiple wavelet coherence were developed and are provided in the Supplement.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference33 articles.
1. Biswas, A. and Si, B. C.: Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency, Geoderma, 165, 50–59, https://doi.org/10.1016/j.geoderma.2011.07.002, 2011. 2. Carey, S. K., Tetzlaff, D., Buttle, J., Laudon, H., McDonnell, J., McGuire, K., Seibert, J., Soulsby, C., and Shanley, J.: Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments, Water Resour. Res., 49, 6194–6207, https://doi.org/10.1002/wrcr.20469, 2013. 3. Das, N. N. and Mohanty, B. P.: Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape during SMEX02: A wavelet approach, Remote Sens. Environ., 112, 522–534, https://doi.org/10.1016/j.rse.2007.05.007, 2008. 4. Feldstein, S. B.: The timescale, power spectra, and climate noise properties of teleconnection patterns, J. Clim., 13, 4430–4440, https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2, 2000. 5. Gates, J. B., Scanlon, B. R., Mu, X. M., and Zhang, L.: Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China, Hydrogeol. J., 19, 865–875, 2011.
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|