Author:
Cheviron Bruno,Moussa Roger
Abstract
Abstract. This review paper investigates the determinants of modelling choices, for numerous applications of 1-D free-surface flow and morphodynamic equations in hydrology and hydraulics, across multiple spatiotemporal scales. We aim to characterize each case study by its signature composed of model refinement (Navier–Stokes: NS; Reynolds-averaged Navier–Stokes: RANS; Saint-Venant: SV; or approximations to Saint-Venant: ASV), spatiotemporal scales and subscales (domain length: L from 1 cm to 1000 km; temporal scale: T from 1 s to 1 year; flow depth: H from 1 mm to 10 m; spatial step for modelling: δL; temporal step: δT), flow typology (Overland: O; High gradient: Hg; Bedforms: B; Fluvial: F), and dimensionless numbers (dimensionless time period T*, Reynolds number Re, Froude number Fr, slope S, inundation ratio Λz, Shields number θ). The determinants of modelling choices are therefore sought in the interplay between flow characteristics and cross-scale and scale-independent views. The influence of spatiotemporal scales on modelling choices is first quantified through the expected correlation between increasing scales and decreasing model refinements (though modelling objectives also show through the chosen spatial and temporal subscales). Then flow typology appears a secondary but important determinant in the choice of model refinement. This finding is confirmed by the discriminating values of several dimensionless numbers, which prove preferential associations between model refinements and flow typologies. This review is intended to help modellers in positioning their choices with respect to the most frequent practices, within a generic, normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献