A meta-analysis and statistical modelling of nitrates in groundwater at the African scale

Author:

Ouedraogo Issoufou,Vanclooster Marnik

Abstract

Abstract. Contamination of groundwater with nitrate poses a major health risk to millions of people around Africa. Assessing the space–time distribution of this contamination, as well as understanding the factors that explain this contamination, is important for managing sustainable drinking water at the regional scale. This study aims to assess the variables that contribute to nitrate pollution in groundwater at the African scale by statistical modelling. We compiled a literature database of nitrate concentration in groundwater (around 250 studies) and combined it with digital maps of physical attributes such as soil, geology, climate, hydrogeology, and anthropogenic data for statistical model development. The maximum, medium, and minimum observed nitrate concentrations were analysed. In total, 13 explanatory variables were screened to explain observed nitrate pollution in groundwater. For the mean nitrate concentration, four variables are retained in the statistical explanatory model: (1) depth to groundwater (shallow groundwater, typically < 50 m); (2) recharge rate; (3) aquifer type; and (4) population density. The first three variables represent intrinsic vulnerability of groundwater systems to pollution, while the latter variable is a proxy for anthropogenic pollution pressure. The model explains 65 % of the variation of mean nitrate contamination in groundwater at the African scale. Using the same proxy information, we could develop a statistical model for the maximum nitrate concentrations that explains 42 % of the nitrate variation. For the maximum concentrations, other environmental attributes such as soil type, slope, rainfall, climate class, and region type improve the prediction of maximum nitrate concentrations at the African scale. As to minimal nitrate concentrations, in the absence of normal distribution assumptions of the data set, we do not develop a statistical model for these data. The data-based statistical model presented here represents an important step towards developing tools that will allow us to accurately predict nitrate distribution at the African scale and thus may support groundwater monitoring and water management that aims to protect groundwater systems. Yet they should be further refined and validated when more detailed and harmonized data become available and/or combined with more conceptual descriptions of the fate of nutrients in the hydrosystem.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference273 articles.

1. Abate, E. Y.: Anthropogenic Impacts on Groundwater Resources in the urban Environment of Dire Dawa, Ethiopia. Master Thesis in Geosciences, Department of Geosciences,Faculty of Mathematics and Natural Sciences, University of Oslo, 64 pp., 2010.

2. Abd El-Salam, M. M. and Abu-Zuid, G. I.: Impact of landfill leachate on the groundwater quality: A case study in Egypt, J. Adv. Res., 2014.

3. Abdalla, F. A. and Scheytt, T.: Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt. J. Earth Syst. Sci., 121, 109–124, 2012.

4. Abdel-Lah, A. K. and Shamrukh, M.: Impact of septic system on ground water quality in a Nile valley village, Egypt. Sixth International Water Technology Conference, IWTC 2001, Alexandria, Egypt, 237–245, 2001.

5. Abdelbaki, C., Asnouni, F., Assoud, I., Cherif, Z. E. A., and Yahiaoui, I.: Contribution to the cartography of the groundwater quality of the urban group of Tlemcen (Algeria), Larhyss J., 16, 7–19, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3