A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

Author:

Lathuillière Michael J.ORCID,Coe Michael T.,Johnson Mark S.ORCID

Abstract

Abstract. The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green–blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference104 articles.

1. Allen, R., Pereira, L., and Raes D, S. M.: Crop evapotranspiration: guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, 1998.

2. ANA (2015): GeoNetwork, available at: http://metadados.ana.gov.br/geonetwork/srv/pt/main.home, last access: September 2015.

3. Anber, U., Gentine, P., Wang, S., and Sobel, A. H.: Fog and rain in the Amazon, P. Natl. Acad. Sci. USA, 112, 11473–11477, https://doi.org/10.1073/pnas.1505077112, 2015.

4. Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K., and Foley, J. A.: Drought and Deforestation: Has Land Cover Change Influenced Recent Precipitation Extremes in the Amazon?, J. Clim., 27, 345–361, https://doi.org/10.1175/JCLI-D-12-00369.1, 2014.

5. Baillie, C.: Assessment of evaporation losses and evaporation mitigation technologies for on farm water storages in Australia, Cooperative Research Center for Irrigation Futures, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3