Recent changes and drivers of the atmospheric evaporative demand in the
Canary Islands
-
Published:2016-08-23
Issue:8
Volume:20
Page:3393-3410
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Vicente-Serrano Sergio M., Azorin-Molina Cesar, Sanchez-Lorenzo Arturo, El Kenawy AhmedORCID, Martín-Hernández Natalia, Peña-Gallardo Marina, Beguería SantiagoORCID, Tomas-Burguera Miquel
Abstract
Abstract. We analysed recent evolution and meteorological drivers of the atmospheric evaporative demand (AED) in the Canary Islands for the period 1961–2013. We employed long and high-quality time series of meteorological variables to analyse current AED changes in this region and found that AED has increased during the investigated period. Overall, the annual ETo, which was estimated by means of the FAO-56 Penman–Monteith equation, increased significantly by 18.2 mm decade−1 on average, with a stronger trend in summer (6.7 mm decade−1). In this study we analysed the contribution of (i) the aerodynamic (related to the water vapour that a parcel of air can store) and (ii) radiative (related to the available energy to evaporate a quantity of water) components to the decadal variability and trends of ETo. More than 90 % of the observed ETo variability at the seasonal and annual scales can be associated with the variability in the aerodynamic component. The variable that recorded more significant changes in the Canary Islands was relative humidity, and among the different meteorological factors used to calculate ETo, relative humidity was the main driver of the observed ETo trends. The observed trend could have negative consequences in a number of water-depending sectors if it continues in the future.
Funder
Secretaría de Estado de Investigación, Desarrollo e Innovación Directorate-General for Research and Innovation
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference63 articles.
1. Abtew, W., Obeysekera, J., and Iricanin, N.: Pan evaporation and potential evapotranspiration trends in South Florida, Hydrol. Process. 25, 958–969, 2011. 2. Allen, R. G. Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, Food and Agricultural Organization (FAO), Irrig. Drain. pap. 56, Rome, 1998. 3. Allen, C. D., Breshears, D., and McDowell, N. G.: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6, 1–55, 2015. 4. Ambas, V. T. and Baltas, E.: Sensitivity analysis of different evapotranspiration methods using a new sensitivity coefficient, Global Nest J., 14, 335–343, 2012. 5. Azorin-Molina, C., Vicente-Serrano, S. M., Sanchez-Lorenzo, A., McVicar, T. R., Morán-Tejeda, E., Revuelto, J., El Kenawy, A., Martín-Hernández, N., and Tomas-Burguera, M.: Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961–2011), J. Hydrol., 523, 262–277, 2015.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|