Cloud tolerance of remote-sensing technologies to measure land surface
temperature
-
Published:2016-08-11
Issue:8
Volume:20
Page:3263-3275
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Holmes Thomas R. H.ORCID, Hain Christopher R., Anderson Martha C.ORCID, Crow Wade T.ORCID
Abstract
Abstract. Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared (TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive-microwave (MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25° resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product.This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR-based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference24 articles.
1. Aires, F., Prigent, C., Rossow, W. B., and Rothstein, M.: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, J. Geophys. Res.-Atmos., 106, 14887–14907, https://doi.org/10.1029/2001JD900085, 2001. 2. Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011. 3. André, C., Ottlé, C., Royer, A., and Maignan, F.: Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data, Remote Sens. Environ., 162, 1–10, https://doi.org/10.1016/j.rse.2015.01.028, 2015. 4. Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am Meteorol. Soc., 82, 2415–2434, 2001. 5. Catherinot, J., Prigent, C., Maurer, R., Papa, F., Jiménez, C., Aires, F., and Rossow, W. B.: Evaluation of “all weather” microwave-derived land surface temperatures with in situ CEOP measurements, J. Geophys. Res.-Atmos., 116, D23105, https://doi.org/10.1029/2011JD016439, 2011.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|