Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico

Author:

LaBone Elizabeth D.,Rose Kenneth A.,Justic Dubravko,Huang Haosheng,Wang Lixia

Abstract

Abstract. The hypoxic zone in the northern Gulf of Mexico varies spatially (area, location) and temporally (onset, duration) on multiple scales. Exposure of fish to hypoxic dissolved oxygen (DO) concentrations (< 2 mg L−1) is often lethal and avoided, while exposure to 2 to 4 mg L−1 occurs readily and often causes the sublethal effects of decreased growth and fecundity for individuals of many species. We simulated the movement of individual fish within a high-resolution 3-D coupled hydrodynamic water quality model (FVCOM-WASP) configured for the northern Gulf of Mexico to examine how spatial variability in DO concentrations would affect fish exposure to hypoxic and sublethal DO concentrations. Eight static snapshots (spatial maps) of DO were selected from a 10 d FVCOM-WASP simulation that showed a range of spatial variation (degree of clumpiness) in sublethal DO for when total sublethal area was moderate (four maps) and for when total sublethal area was high (four maps). An additional case of allowing DO to vary in time (dynamic DO) was also included. All simulations were for 10 d and were performed for 2-D (bottom layer only) and 3-D (allows for vertical movement of fish) sets of maps. Fish movement was simulated every 15 min with each individual switching among three algorithms: tactical avoidance when exposure to hypoxic DO was imminent, strategic avoidance when exposure had occurred in the recent past, and default (independent of DO) when avoidance was not invoked. Cumulative exposure of individuals to hypoxia was higher under the high sublethal area snapshots compared to the moderate sublethal area snapshots but spatial variability in sublethal concentrations had little effect on hypoxia exposure. In contrast, relatively high exposures to sublethal DO concentrations occurred in all simulations. Spatial variability in sublethal DO had opposite effects on sublethal exposure between moderate and high sublethal area maps: the percentage of fish exposed to 2–3 mg L−1 decreased with increasing variability for high sublethal area but increased for moderate sublethal area. There was also a wide range of exposures among individuals within each simulation. These results suggest that averaging DO concentrations over spatial cells and time steps can result in underestimation of sublethal effects. Our methods and results can inform how movement is simulated in larger models that are critical for assessing how management actions to reduce nutrient loadings will affect fish populations.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3