Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails
-
Published:2024-03-27
Issue:6
Volume:24
Page:3813-3837
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Märkl Raphael SatoruORCID, Voigt ChristianeORCID, Sauer DanielORCID, Dischl Rebecca KatharinaORCID, Kaufmann StefanORCID, Harlaß Theresa, Hahn Valerian, Roiger Anke, Weiß-Rehm CorneliusORCID, Burkhardt UlrikeORCID, Schumann UlrichORCID, Marsing AndreasORCID, Scheibe Monika, Dörnbrack AndreasORCID, Renard Charles, Gauthier MaximeORCID, Swann Peter, Madden Paul, Luff Darren, Sallinen Reetu, Schripp TobiasORCID, Le Clercq Patrick
Abstract
Abstract. Powering aircraft by sustainable aviation fuels (SAFs) is a pathway to reduce the climate impact of aviation by lowering aviation lifecycle CO2 emissions and by reducing ice crystal numbers and radiative forcing from contrails. While the effect of SAF blends on contrails has been measured previously, here we present novel measurements on particle emission and contrails from 100 % SAF combustion. During the ECLIF3 (Emission and CLimate Impact of alternative Fuels) campaign, a collaboration between the Deutsches Zentrum für Luft- und Raumfahrt (DLR), Airbus, Rolls-Royce, and Neste, the DLR Falcon 20 research aircraft performed in situ measurements following an Airbus A350-941 source aircraft powered by Rolls-Royce Trent XWB-84 engines in 1 to 2 min old contrails at cruise altitudes. Apparent ice emission indices of 100 % HEFA-SPK (hydro-processed esters and fatty acids–synthetic paraffinic kerosene) were measured and compared to Jet A-1 fuel contrails at similar engine and ambient ice-supersaturated conditions within a single flight. A 56 % reduction in ice particle numbers per mass of burned fuel was measured for 100 % HEFA-SPK compared to Jet A-1 under engine cruise conditions. The measured 35 % reduction in soot particle numbers suggests reduced ice activation by the low-sulfur HEFA fuel. Contrail properties are consistently modeled with a contrail plume model. Global climate model simulations for the 2018 fleet conservatively estimate a 26 % decrease in contrail radiative forcing and stronger decreases for larger particle reductions. Our results indicate that higher hydrogen content fuels as well as clean engines with low particle emissions may lead to reduced climate forcing from contrails.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference124 articles.
1. Afchine, A., Rolf, C., Costa, A., Spelten, N., Riese, M., Buchholz, B., Ebert, V., Heller, R., Kaufmann, S., Minikin, A., Voigt, C., Zöger, M., Smith, J., Lawson, P., Lykov, A., Khaykin, S., and Krämer, M.: Ice particle sampling from aircraft – influence of the probing position on the ice water content, Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, 2018. a 2. Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59–60, 251–264, https://doi.org/10.1016/S0169-8095(01)00119-3, 2001. a 3. Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteorol. Mon., 58, 91–923, https://doi.org/10.1175/amsmonographs-d-16-0011.1, 2017. a 4. Beyersdorf, A. J., Timko, M. T., Ziemba, L. D., Bulzan, D., Corporan, E., Herndon, S. C., Howard, R., Miake-Lye, R., Thornhill, K. L., Winstead, E., Wey, C., Yu, Z., and Anderson, B. E.: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels, Atmos. Chem. Phys., 14, 11–23, https://doi.org/10.5194/acp-14-11-2014, 2014. a 5. Bier, A. and Burkhardt, U.: Impact of Parametrizing Microphysical Processes in the Jet and Vortex Phase on Contrail Cirrus Properties and Radiative Forcing, J. Geophys. Res.-Atmos., 127, e2022JD036677, https://doi.org/10.1029/2022JD036677, 2022. a, b, c, d, e, f, g
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|