Measurement report: Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign
-
Published:2024-03-19
Issue:6
Volume:24
Page:3405-3420
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Liu Xinya, Henzing BasORCID, Hensen Arjan, Mulder Jan, Yao PengORCID, van Dinther Danielle, van Bronckhorst Jerry, Huang Rujin, Dusek Ulrike
Abstract
Abstract. The recently developed time-of-flight aerosol chemical speciation monitor with a capture vaporizer and a PM2.5 aerodynamic lens (TOF-ACSM-CV-PM2.5) aims to improve the collection efficiency and chemical characterization of aerosol particles with a diameter smaller than 2.5 µm. In this study, comprehensive cross-comparisons were performed between real-time online measurements and offline filter analysis with 24 h collection time. The goal was to evaluate the capabilities of the TOF-ACSM-CV-PM2.5 lens, as well as the accuracy of the TOF-ACSM-CV-PM2.5. The experiments were conducted at Cabauw Experimental Site for Atmospheric Research (CESAR) during the RITA-2021 campaign. The non-refractory fine particulate matter (PM1.0 and PM2.5) was measured by two collocated TOF-ACSM-CV-PM2.5 instruments by placing them behind a PM2.5 and PM1.0 inlet, respectively. A comparison between the ACSMs and PM2.5 and PM1.0 filter samples showed a much better accuracy than ±30 % less given in the previous reports, with average differences less than ±10 % for all inorganic chemical species. In addition, the ACSMs were compared to the Monitoring Instrument for Aerosol and Gas (MARGA) (slope between 0.78 and 0.97 for inorganic compounds, R2≥ 0.93) and a mobility particle size spectrometer (MPSS), measuring the particle size distribution from around 10 to 800 nm (slope was around 1.00, R2= 0.91). The intercomparison of the online measurements and the comparison between the online and offline measurements indicated a low bias (< 10 % for inorganic compounds) and demonstrated the high accuracy and stability of the TOF-ACSM-CV-PM2.5 lens for the atmospheric observations of particle matter. The two ACSMs exhibited an excellent agreement, with differences less than 7 %, which allowed a quantitative estimate of PM1.0 vs. PM2.5 chemical composition. The result showed that the PM1.0 accounted for about 70 %–80 % of the PM2.5 on average. The NO3 mass fraction increased, but the organic carbon (OC) mass fraction decreased from PM1.0 to PM2.5, indicating the size dependence on chemical composition.
Funder
China Scholarship Council Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Copernicus GmbH
Reference99 articles.
1. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008. 2. Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis, J. Geophys. Res.-Atmos., 108, 4090, https://doi.org/10.1029/2002jd002358, 2003. 3. Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., an<span id="page3416"/>d Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004. 4. Bhowmik, H. S., Shukla, A., Lalchandani, V., Dave, J., Rastogi, N., Kumar, M., Singh, V., and Tripathi, S. N.: Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO3−, SO42−, NH4+, and Cl−) in PM2.5 over a heavily polluted megacity, Delhi, Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, 2022. 5. Brunekreef, B., Beelen, R., Hoek, G., Schouten, L., Bausch- Goldbohm, S., Fischer, P., Armstrong, B., Hughes, E., Jerrett, M., and van den Brandt, P.: Effects of long-term exposure to trafficrelated air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study, Research report, Health Effects Institute, 139, 5–89, 2009.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|