Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains

Author:

Wang Gaoyun,Fu Rong,Zhuang YizhouORCID,Dirmeyer Paul A.,Santanello Joseph A.,Wang Guiling,Yang KunORCID,McColl Kaighin

Abstract

Abstract. ​​​​​​​Land–atmosphere coupling (LAC) has long been studied, focusing on land surface and atmospheric boundary layer processes. However, the influence of humidity in the lower troposphere (LT), especially that above the planetary boundary layer (PBL), on LAC remains largely unexplored. In this study, we use radiosonde observations from the US Southern Great Plains (SGP) site and an entrained parcel buoyancy model to investigate the impact of LT humidity on LAC there during the warm season (May–September). We quantify the effect of LT humidity on convective buoyancy by measuring the difference between the 2–4 km vertically integrated buoyancy with the influence of background LT humidity and that without it. Our results show that, under dry soil conditions, anomalously high LT humidity is necessary to produce the buoyancy profiles required for afternoon precipitation events (APEs). These APEs under dry soil moisture cannot be explained by commonly used local LAC indices such as the convective triggering potential and low-level humidity index (CTP / HILow), which do not account for the influence of the LT humidity. On the other hand, consideration of LT humidity is unnecessary to explain APEs under wet soil moisture conditions, suggesting that the boundary layer moisture alone could be sufficient to generate the required buoyancy profiles. These findings highlight the need to consider the impact of LT humidity, which is often decoupled from the humidity near the surface and is largely controlled by moisture transport, in understanding land–atmospheric feedbacks under dry soil conditions, especially during droughts or dry spells over the SGP.

Funder

China Scholarship Council

National Science Foundation

Climate Program Office

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Reference53 articles.

1. ARM Data Center: https://www.arm.gov/data/, last access: 24 September 2020.

2. Atmospheric Radiation Measurement (ARM) user facility: Oklahoma Mesonet Soil Moisture (OKMSOIL), ARM Data Center [data set], https://www.arm.gov/capabilities/science-data-products/vaps/okmsoil (last access: 12 June 2020), 1998.

3. Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), ARM Data Center [data set], https://doi.org/10.5439/1595321, 2001.

4. Atmospheric Radiation Measurement (ARM) user facility: Planetary Boundary Layer Height (PBLHTSONDE1MCFARL), ARM Data Center [data set], https://doi.org/10.5439/1991783, 2015.

5. Atmospheric Radiation Measurement (ARM) user facility: Arkansas-Red Basin River Forecast Center (ABRFCPCPQPE), ARM Data Center [data set], https://www.arm.gov/capabilities/science-data-products/vaps/abrfc (last access: 16 November 2019), 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3