Sensitivity of ocean biogeochemistry to the iron supply from the Antarctic Ice Sheet explored with a biogeochemical model
-
Published:2019-09-24
Issue:18
Volume:16
Page:3583-3603
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Person RenaudORCID, Aumont Olivier, Madec Gurvan, Vancoppenolle Martin, Bopp Laurent, Merino Nacho
Abstract
Abstract. Iron (Fe) delivery by the Antarctic Ice Sheet (AIS) through ice shelf and iceberg melting enhances primary productivity in the largely iron-limited Southern Ocean (SO). To explore this fertilization capacity, we implement a simple representation of the AIS iron source in the global ocean biogeochemical model NEMO-PISCES. We evaluate the response of Fe, surface chlorophyll, primary production, and carbon (C) export to the magnitude and hypothesized vertical distributions of the AIS Fe fluxes. Surface Fe and chlorophyll concentrations are increased up to 24 % and 12 %, respectively, over the whole SO. The AIS Fe delivery is found to have a relatively modest impact on SO primary production and C export, which are increased by 0.063±0.036 PgC yr−1 and 0.028±0.016, respectively. However, in highly fertilized areas, primary production and C export can be increased by up to 30 % and 42 %, respectively. Icebergs are predicted to have a much larger impact on Fe, surface chlorophyll, and primary productivity than ice shelves in the SO. The response of surface Fe and chlorophyll is maximum in the Atlantic sector, northeast of the tip of the Antarctic Peninsula, and along the East Antarctic coast. The iceberg Fe delivery below the mixed layer may, depending on its assumed vertical distribution, fuel a non-negligible subsurface reservoir of Fe. The AIS Fe supply is effective all year round. The seasonal variations of the iceberg Fe fluxes have regional impacts that are small for annual mean primary productivity and C export at the scale of the SO.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference109 articles.
1. Anderson, J., Domack, E., and Kurtz, D.: Observations of Sediment–laden
Icebergs in Antarctic Waters: Implications to Glacial Erosion and
Transport, J. Glaciol., 25, 387–396,
https://doi.org/10.3189/S0022143000015240, 1980. a 2. Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37
Antarctic coastal polynya systems, J. Geophys. Res., 108, C8,
https://doi.org/10.1029/2002JC001739, 2003. a 3. Arrigo, K. R., van Dijken, G. L., and Strong, A. L.: Environmental controls of
marine productivity hot spots around Antarctica, J. Geophys.
Res.-Oceans, 120, 5545–5565, https://doi.org/10.1002/2015JC010888, 2015. a, b 4. Arrigo, K. R., Dijken, G. L. V., Castelao, R. M., Luo, H., Rennermalm, A. K.,
Tedesco, M., Mote, T. L., Oliver, H., and Yager, P. L.: Melting glaciers
stimulate large summer phytoplankton blooms in southwest Greenland waters,
Geophys. Res. Lett., 44, 6278–6285, https://doi.org/10.1002/2017GL073583,
2017. a 5. Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a, b, c, d
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|