Brown carbon's emission factors and optical characteristics in household biomass burning: developing a novel algorithm for estimating the contribution of brown carbon

Author:

Sun Jianzhong,Zhang Yuzhe,Zhi Guorui,Hitzenberger Regina,Jin Wenjing,Chen YingjunORCID,Wang Lei,Tian Chongguo,Li Zhengying,Chen Rong,Xiao Wen,Cheng YuanORCID,Yang Wei,Yao Liying,Cao Yang,Huang Duo,Qiu Yueyuan,Xu Jiali,Xia Xiaofei,Yang Xin,Zhang Xi,Zong Zheng,Song Yuchun,Wu Changdong

Abstract

Abstract. Recent studies have highlighted the importance of brown carbon (BrC) in various fields, particularly relating to climate change. The incomplete combustion of biomass in open and contained burning conditions is believed to be a significant contributor to primary BrC emissions. So far, few studies have reported the emission factors of BrC from biomass burning, and few studies have specifically addressed which form of light-absorbing carbon, such as black carbon (BC) or BrC, plays a leading role in the total solar light absorption by biomass burning. In this study, the optical integrating sphere (IS) approach was used, with carbon black and humic acid sodium salt as reference materials for BC and BrC, respectively, to distinguish BrC from BC on filter samples. A total of 11 widely used biomass types in China were burned in a typical stove to simulate the real household combustion process. (i) Large differences existed in the emission factors of BrC (EFBrC) among the tested biomass fuels, with a geometric mean EFBrC of 0.71 g kg−1 (0.24–2.09). Both the plant type (herbaceous or ligneous) and burning style (raw or briquetted biomass) might influence the value of EFBrC. The observed reduction in the emissions of light-absorbing carbon (LAC) confirmed an additional benefit of biomass briquetting in climate change mitigation. (ii) The calculated annual BrC emissions from China's household biomass burning amounted to 712 Gg, higher than the contribution from China's household coal combustion (592 Gg). (iii) The average absorption Ångström exponent (AAE) was (2.46±0.53), much higher than that of coal-chunk combustion smoke (AAE=1.30±0.32). (iv) For biomass smoke, the contribution of absorption by BrC to the total absorption by BC+BrC across the strongest solar spectral range of 350–850 nm (FBrC) was 50.8 %. This is nearly twice that for BrC in smoke from household coal combustion (26.5 %). (v) Based on this study, a novel algorithm was developed for estimating the FBrC for perhaps any combustion source (FBrC=0.5519ln⁡AAE+0.0067, R2=0.999); the FBrC value for all global biomass burning (open+contained) (FBrC-entire) was 64.5 % (58.5 %–69.9 %). This corroborates the dominant role of BrC in total biomass burning absorption. Therefore, the inclusion of BrC is not optional but indispensable when considering the climate energy budget, particularly for biomass burning emissions (contained and open).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3