Monthly measured primary and new productivities in the Ulleung Basin as a biological "hot spot" in the East/Japan Sea

Author:

Kwak J. H.,Lee S. H.,Park H. J.,Choy E. J.,Jeong H. D.,Kim K. R.,Kang C. K.

Abstract

Abstract. The Ulleung Basin (UB), located in the southwestern part of the East/Japan Sea (EJS), is considered having an unusually high productivity for a deep basin. Recently changes have been reported in physical, chemical, and biological properties. Here we measured the primary and new productivities in the UB using a 13C-15N dual isotope tracer technique. Measurements took place every month for the first time throughout a year for a better estimate of the annual primary production in the EJS. Temporal variations of temperature, salinity, and density (σt) in the study area were highly seasonal as expected for an ocean in the temperate zone. Nutrient distributions reflected these seasonal fluctuations in the vertical structure of the water column. Diatoms were in general the most dominant phytoplankton ranging from 15.5 to 82.2% with an average of 42.0% (S.D. = ±9.9%). Based on those average daily productivities from our monthly measurements, the annual primary, new, and regenerated production in the UB were 273.0 g C m−2 yr−1, 62.6 g N m−2 yr−1, and 48.7 g N m−2 yr−1, respectively. Our estimated high f ratio (0.59) in the UB, indicated that the predominant nitrogen source for primary production was nitrate. This is comparable with the nitrogen source in a productive coastal-upwelling region. New carbon production by phytoplankton is estimated as 145.6 g C m−2 yr−1 (S.D. = ±40.8 g C m−2 yr−1) which indicates that a large portion (53.9%) of the total annual primary production might potentially be exported from the diatom-dominated euphotic zone to a deeper zone in the UB. Further intense integrated field observations will be necessary to improve our understanding of the current marine ecosystem in the UB as an important biological production area in the EJS.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3