Extreme storms during the last 6500 years from lagoonal sedimentary archives in the Mar Menor (SE Spain)
-
Published:2016-06-28
Issue:6
Volume:12
Page:1389-1400
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Dezileau Laurent, Pérez-Ruzafa AngelORCID, Blanchemanche Philippe, Degeai Jean-Philippe, Raji Otmane, Martinez Philippe, Marcos Concepcion, Von Grafenstein Ulrich
Abstract
Abstract. Storms and tsunamis, which may seriously endanger human society, are amongst the most devastating marine catastrophes that can occur in coastal areas. Many such events are known and have been reported for the Mediterranean, a region where high-frequency occurrences of these extreme events coincides with some of the most densely populated coastal areas in the world. In a sediment core from the Mar Menor (SE Spain), we discovered eight coarse-grained layers which document marine incursions during periods of intense storm activity or tsunami events. Based on radiocarbon dating, these extreme events occurred around 5250, 4000, 3600, 3010, 2300, 1350, 650, and 80 years cal BP. No comparable events have been observed during the 20th and 21st centuries. The results indicate little likelihood of a tsunami origin for these coarse-grained layers, although historical tsunami events are recorded in this region. These periods of surge events seem to coincide with the coldest periods in Europe during the late Holocene, suggesting a control by a climatic mechanism for periods of increased storm activity. Spectral analyses performed on the sand percentage revealed four major periodicities of 1228 ± 327, 732 ± 80, 562 ± 58, and 319 ± 16 years. Amongst the well-known proxies that have revealed a millennial-scale climate variability during the Holocene, the ice-rafted debris (IRD) indices in the North Atlantic developed by Bond et al. (1997, 2001) present a cyclicity of 1470 ± 500 years, which matches the 1228 ± 327-year periodicity evidenced in the Mar Menor, considering the respective uncertainties in the periodicities. Thus, an in-phase storm activity in the western Mediterranean is found with the coldest periods in Europe and with the North Atlantic thermohaline circulation. However, further investigations, such as additional coring and high-resolution coastal imagery, are needed to better constrain the main cause of these multiple events.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Global and Planetary Change
Reference62 articles.
1. Álvarez-Gómez, J. A., Aniel-Quiroga, l., González, M., and Otero, L.: Tsunami hazard at the Western Mediterranean Spanish coast from seismic sources, Nat. Hazards Earth Syst. Sci., 11, 227–240, https://doi.org/10.5194/nhess-11-227-2011, 2011. 2. Berger, A., Melice, J.-L., and Hinnov, L.: A strategy for frequency spectra of Quaternary climate records, Clim. Dynam., 5, 227–240, 1991. 3. Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., DeMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates, Science, 278, 1257–1266, 1997. 4. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, 2001. 5. Bronk Ramsey, C.: Development of the Radiocarbon calibration program OxCal, Radiocarbon, 43, 355–363, 2001.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|