Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling
-
Published:2015-06-03
Issue:2
Volume:6
Page:621-632
-
ISSN:1869-9529
-
Container-title:Solid Earth
-
language:en
-
Short-container-title:Solid Earth
Author:
Ahmadi O., Juhlin C.ORCID, Ask M.ORCID, Lund B.ORCID
Abstract
Abstract. A new seismic reflection survey for imaging deeper levels of the end-glacial Pärvie fault system in northern Sweden was acquired in June 2014. The Pärvie fault system hosts the largest fault scarp so far documented in northern Scandinavia, both in terms of its length and calculated magnitude of the earthquake that generated it. Present-day microearthquakes occur along the length of the fault scarp on the eastern side of the scarp, in general agreement with an east-dipping main fault. In the central section of the fault system, where there is a number of subsidiary faults east of the main Pärvie scarp, it has been unclear how the earthquakes relate to the structures mapped at the surface. A seismic profile across the Pärvie fault system acquired in 2007, with a mechanical hammer as a source, showed a good correlation between the surface mapped faults and moderate to steeply dipping reflections. The most pronounced reflectors could be mapped to about 3 km depth. In the new seismic survey, for deeper penetration an explosive source with a maximum charge size of 8.34 kg in 20 m deep shot holes was used. Reflectors can now be traced to deeper levels with the main 65° east-dipping fault interpreted as a weakly reflective structure. As in the previous profile, there is a strongly reflective 60° west-dipping structure present to the east of the main fault that can now be mapped to about 8 km depth. Extrapolations of the main and subsidiary faults converge at a depth of about 11.5 km, where current earthquake activity is concentrated, suggesting their intersection has created favorable conditions for seismic stress release. Based on the present and previous seismic reflection data, we propose potential locations for future boreholes for scientific drilling into the fault system. These boreholes will provide a better understanding of the reflective nature of the fault structures and stress fields along the faults at depth.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Reference34 articles.
1. Arvidsson, R.: Fennoscandian Earthquakes: Whole Crustal Rupturing Related to Postglacial Rebound, Science, 274, 744–746, https://doi.org/10.1126/science.274.5288.744, 1996. 2. Bäckstrom, A., Viola, G., Rantakokko, N., Jonsson, E., and Ask, M.: Preliminary results from fault-slip analysis of the Pärvie neotectonic postglacial fault zone, northern Sweden, Geophysical Research Abstracts, Vol. 15, EGU2013-1751, 2013. 3. Bödvarsson, R. and Lund, B.: The SIL Seismological data Acquisition System -as Operated in Iceland and in Sweden, in Methods and Applications of Signal Processing in Seismic Network Operations, eds. Takanami, T. and Kitagawa, G., Lecture Notes in Earth Sciences, 98, Springer, Berlin, 131–148, 2003. 4. Bungum, H. and Lindholm, C.: Seismo- and neotectonics in Finnmark, Kola and the southern Barents Sea, part 2: Seismological analysis and seismotectonics, Tectonophysics, 270, 15–28, https://doi.org/10.1016/S0040-1951(96)00139-4, 1997. 5. Edfelt, Å., Sandrin, A., Evins, P., Jeffries, T., Storey, C., Elming, S.-Å, and Martinsson, O.: Stratigraphy and tectonic setting of the host rocks to the Tjårrojåkka Fe-oxide Cu-Au deposits, Kiruna area, northern Sweden, GFF, 128, 221–232, https://doi.org/10.1080/11035890601283221, 2006.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|