Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO<sub>2</sub>: implications for <i>δ</i><sup>15</sup>N in tropospheric reactive nitrogen

Author:

Li JianghanyangORCID,Zhang XuanORCID,Orlando John,Tyndall GeoffreyORCID,Michalski GregORCID

Abstract

Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO2) play a significant role in determining the nitrogen isotopic compositions (δ15N) of atmospheric reactive nitrogen. Both the equilibrium isotopic exchange between NO and NO2 molecules and the isotope effects occurring during the NOx photochemical cycle are important, but both are not well constrained. The nighttime and daytime isotopic fractionations between NO and NO2 in an atmospheric simulation chamber at atmospherically relevant NOx levels were measured. Then, the impact of NOx level and NO2 photolysis rate on the combined isotopic fractionation (equilibrium isotopic exchange and photochemical cycle) between NO and NO2 was calculated. It was found that the isotope effects occurring during the NOx photochemical cycle can be described using a single fractionation factor, designated the Leighton cycle isotope effect (LCIE). The results showed that at room temperature, the fractionation factor of nitrogen isotopic exchange is 1.0289±0.0019, and the fractionation factor of LCIE (when O3 solely controls the oxidation from NO to NO2) is 0.990±0.005. The measured LCIE factor showed good agreement with previous field measurements, suggesting that it could be applied in an ambient environment, although future work is needed to assess the isotopic fractionation factors of NO+RO2/HO2→NO2. The results were used to model the NO–NO2 isotopic fractionations under several NOx conditions. The model suggested that isotopic exchange was the dominant factor when NOx>20 nmol mol−1, while LCIE was more important at low NOx concentrations (<1 nmol mol−1) and high rates of NO2 photolysis. These findings provided a useful tool to quantify the isotopic fractionations between tropospheric NO and NO2, which can be applied in future field observations and atmospheric chemistry models.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3