Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing
-
Published:2020-08-13
Issue:15
Volume:20
Page:9491-9524
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Johnson Jill S., Regayre Leighton A.ORCID, Yoshioka Masaru, Pringle Kirsty J., Turnock Steven T.ORCID, Browse Jo, Sexton David M. H.ORCID, Rostron John W.ORCID, Schutgens Nick A. J.ORCID, Partridge Daniel G., Liu DantongORCID, Allan James D.ORCID, Coe Hugh, Ding AijunORCID, Cohen David D., Atanacio Armand, Vakkari Ville, Asmi Eija, Carslaw Ken S.ORCID
Abstract
Abstract. The effect of observational constraint on the ranges of
uncertain physical and chemical process parameters was explored in a global
aerosol–climate model. The study uses 1 million variants of the Hadley Centre General Environment Model version 3
(HadGEM3) that sample 26 sources of uncertainty, together with over 9000
monthly aggregated grid-box measurements of aerosol optical depth, PM2.5,
particle number concentrations, sulfate and organic mass concentrations.
Despite many compensating effects in the model, the procedure constrains the
probability distributions of parameters related to secondary organic
aerosol, anthropogenic SO2 emissions, residential emissions, sea spray
emissions, dry deposition rates of SO2 and aerosols, new particle
formation, cloud droplet pH and the diameter of primary combustion
particles. Observational constraint rules out nearly 98 % of the model
variants. On constraint, the ±1σ (standard deviation) range
of global annual mean direct radiative forcing (RFari) is reduced by
33 % to −0.14 to −0.26 W m−2, and the 95 % credible interval (CI)
is reduced by 34 % to −0.1 to −0.32 W m−2. For the global annual
mean aerosol–cloud radiative forcing, RFaci, the ±1σ
range is reduced by 7 % to −1.66 to −2.48 W m−2, and the 95 % CI by
6 % to −1.28 to −2.88 W m−2. The tightness of the constraint is
limited by parameter cancellation effects (model equifinality) as well as
the large and poorly defined “representativeness error” associated with
comparing point measurements with a global model. The constraint could also
be narrowed if model structural errors that prevent simultaneous agreement
with different measurement types in multiple locations and seasons could be
improved. For example, constraints using either sulfate or PM2.5
measurements individually result in RFari±1σ ranges
that only just overlap, which shows that emergent constraints based on one
measurement type may be overconfident.
Funder
Horizon 2020 Engineering and Physical Sciences Research Council National Centre for Atmospheric Science Newton Fund Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference144 articles.
1. Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009, 2009. 2. Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H.,
Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. A., Li, S.-M.,
and Worsnop, D. R.: Characterization of urban and rural organic particulate
in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers,
Atmos. Environ., 38, 5745–5758, https://doi.org/10.1016/j.atmosenv.2004.01.054,
2004. 3. Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N.,
Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an
Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and
error analysis, J. Geophys. Res.-Atmos., 108, 4090,
https://doi.org/10.1029/2002JD002358, 2003a. 4. Allan, J. D., Alfarra, M. R., Bower, K. N., Williams, P. I., Gallagher, M.
W., Jimenez, J. L., McDonald, A. G., Nemitz, E., Canagaratna, M. R., Jayne,
J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an Aerodyne
aerosol mass spectrometer 2. Measurements of fine particulate chemical
composition in two U.K. cities, J. Geophys. Res.-Atmos., 108, 4091,
https://doi.org/10.1029/2002JD002359, 2003b. 5. Allan, J. D., Alfarra, M. R., Bower, K. N., Coe, H., Jayne, J. T., Worsnop, D. R., Aalto, P. P., Kulmala, M., Hyötyläinen, T., Cavalli, F., and Laaksonen, A.: Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer, Atmos. Chem. Phys., 6, 315–327, https://doi.org/10.5194/acp-6-315-2006, 2006.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|