Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018

Author:

Ren Lili,Yang YangORCID,Wang Hailong,Zhang Rudong,Wang Pinya,Liao Hong

Abstract

Abstract. Observations show that the concentrations of Arctic sulfate and black carbon (BC) aerosols have declined since the early 1980s. Previous studies have reported that reducing sulfate aerosols potentially contributed to the recent rapid Arctic warming. In this study, a global aerosol–climate model (Community Atmosphere Model, version 5) equipped with Explicit Aerosol Source Tagging (CAM5-EAST) is applied to quantify the source apportionment of aerosols in the Arctic from 16 source regions and the role of aerosol variations in affecting changes in the Arctic surface temperature from 1980 to 2018. The CAM5-EAST simulated surface concentrations of sulfate and BC in the Arctic had a decrease of 43 % and 23 %, respectively, in 2014–2018 relative to 1980–1984 mainly due to the reduction of emissions from Europe, Russia and local Arctic sources. Increases in emissions from South and East Asia led to positive trends in Arctic sulfate and BC in the upper troposphere. All aerosol radiative impacts are considered including aerosol–radiation and aerosol–cloud interactions, as well as black carbon deposition on snow- and ice-covered surfaces. Within the Arctic, sulfate reductions caused a top-of-atmosphere (TOA) warming of 0.11 and 0.25 W m−2 through aerosol–radiation and aerosol–cloud interactions, respectively. While the changes in Arctic atmospheric BC has little impact on local radiative forcing, the decrease in BC in snow and ice led to a net cooling of 0.05 W m−2. By applying climate sensitivity factors for different latitudinal bands, global changes in sulfate and BC during 2014–2018 (with respect to 1980–1984) exerted a +0.088 and 0.057 K Arctic surface warming, respectively, through aerosol–radiation interactions. Through aerosol–cloud interactions, the sulfate reduction caused an Arctic warming of +0.193 K between the two time periods. The weakened BC effect on snow–ice albedo led to an Arctic surface cooling of −0.041 K. The changes in atmospheric sulfate and BC outside the Arctic produced a total Arctic warming of +0.25 K, the majority of which is due to the midlatitude changes in radiative forcing. Our results suggest that changes in aerosols over the midlatitudes of the Northern Hemisphere have a larger impact on Arctic temperature than other regions through enhanced poleward heat transport. The combined total effects of sulfate and BC produced an Arctic surface warming of +0.297 K, explaining approximately 20 % of the observed Arctic warming since the early 1980s.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference88 articles.

1. Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019.

2. Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000.

3. AMAP: The Impact of Black Carbon on Arctic Climate, by: Quinn, P. K., Stohl, A., Arneth, A., Berntsen, T., Burkhart, J. F., Christensen, J., Flanner, M., Kupiainen, K., Lihavainen, H., Shepherd, M., Shevchenko, V., Skov, H., and Vestreng, V., AMAP Tech. Rep., 4, 72 pp., Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2011.

4. Alexeev, V. A., Esau, I., Polyakov, I. V., Byam, S. J., and Sorokina, S.: Vertical structure of recent Arctic warming from observed data and reanalysis products, Clim. Change, 111, 215–239, https://doi.org/10.1007/s10584-011-0192-8, 2012.

5. Barrie, L. A.: Arctic air pollution – An overview of current knowledge, Atmos. Environ., 20, 643–663, https://doi.org/10.1016/0004-6981(86)90180-0, 1986.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3