Quantifying wetland methane emissions with process-based models of different complexities

Author:

Tang J.,Zhuang Q.,Shannon R. D.,White J. R.

Abstract

Abstract. Bubbling is an important pathway of methane emissions from wetland ecosystems. However the concentration-based threshold function approach in current biogeochemistry models of methane is not sufficient to represent the complex ebullition process. Here we revise an extant process-based biogeochemistry model, the Terrestrial Ecosystem Model into a multi-substance model (CH4, O2, CO2 and N2) to simulate methane production, oxidation, and transport (particularly ebullition) with different model complexities. When ebullition is modeled with a concentration-based threshold function and if the inhibition effect of oxygen on methane production and the competition for oxygen between methanotrophy and heterotrophic respiration are retained, the model becomes a two-substance system. Ignoring the role of oxygen, while still modeling ebullition with a concentration-based threshold function, reduces the model to a one-substance system. These models were tested through a group of sensitivity analyses using data from two temperate peatland sites in Michigan. We demonstrate that only the four-substance model with a pressure-based ebullition algorithm is able to capture the episodic emissions induced by a sudden decrease in atmospheric pressure or by a sudden drop in water table. All models captured the retardation effect on methane efflux from an increase in surface standing water which results from the inhibition of diffusion and the increase in rhizospheric oxidation. We conclude that to more accurately account for the effects of atmospheric pressure dynamics and standing water on methane effluxes, the multi-substance model with a pressure-based ebullition algorithm should be used in the future to quantify global wetland CH4 emissions. Further, to more accurately simulate the pore water gas concentrations and different pathways of methane transport, an exponential root distribution function should be used and the phase-related parameters should be treated as temperature dependent.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3